Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Vorwissen: Unterschied zwischen den Versionen
Zeile 7: | Zeile 7: | ||
==='''Sekanten an Funktionsgraphen'''=== | ==='''Sekanten an Funktionsgraphen'''=== | ||
Eine Sekante schneidet den Graphen einer Funktion in zwei Punkten. | Eine Sekante schneidet den Graphen einer Funktion in zwei Punkten. | ||
[[Datei:Beispielbild Sekante.png | [[Datei:Beispielbild Sekante.png|mini|350x350px|Sekante des Funktionsgraphen <math>f(x) | ||
</math> durch die Punkte <math>A</math> und <math>B</math>.|alternativtext=|ohne]] | |||
==='''Lineare Funktionen'''=== | ==='''Lineare Funktionen'''=== |
Version vom 13. August 2019, 13:12 Uhr
Bild mit Wiederholung einfügen
Sekanten an Funktionsgraphen
Eine Sekante schneidet den Graphen einer Funktion in zwei Punkten.
Lineare Funktionen
Lineare Funktion sind Funktionen, die eine Funktionsgleichung der Form oder haben. Der Graph einer linearen Funktion ist eine Gerade. Die Zahl gibt den Wert der Steigung an und die Zahl gibt den y-Wert des Schnittpunkts der Geraden mit der y-Achse an.
Der Differenzenquotient
Die Steigung des Graphen einer linearen Funktion kann mit Hilfe des Differenzenquotienten berechnet werden.
Ist eine Funktion f auf einem Intervall definiert, so gibt der Differenzenquotient
die Steigung der Geraden durch die Punkte und an.
Die Differenzen können auch als und geschrieben werden. Der griechische Großbuchstabe Delta steht hier als Symbol für die Differenz der x- und y-Werte.
Beispiele
Die h - Schreibweise
Anstatt die Änderung der y-Werte in Relation zur Differenz zu setzen, kann man den Differenzenquotienten auch wie folgt schreiben:
Die mittlere Änderungsrate
Die mittlere Änderungsrate ist die relative Änderung eines Bestandes in einem gegebenen Intervall. Sie entspricht der Steigung der Sekante durch die Punkte und auf der Bestandsfunktion und lässt sich mit Hilfe des Differenzenquotienten berechnen.
Bestandsgröße | Zuflüsse | Abflüse |
---|---|---|
Anzahl der Schüler | Einschulungen | Schulabgänger |
Treibstoffmenge im Tank | Tanken an der Tankstelle | Treibstoffverbrauch |
Kontostand | Zubuchung | Abbuchung |
Anzahl der Hotelgäste | ankommende Gäste | abreisende Gäste |
Staatsverschuldung | Staatseinnahmen | Staatsausgaben |
Beispiel
Bei einem Experiment wurde die Temperatur einer Flüssigkeit in 10 Minuten Abständen gemessen. Die mittlere Änderungsrate der Temperatur lässt sich nun mit Hilfe des Differenzenquotient berechnen: