Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als lokale Änderungsrate: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
KKeine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 1: Zeile 1:
{{Navigation verstecken|{{Vorlage:Lernpfad-Navigation|* Grundvorstellungen zum Ableitungsbegriff<br />[[Das Funktionsmikroskop]]}}
 
|Navigation anzeigen |Navigation verbergen }}
==Porsche==
==Porsche==
Die folgende Tabelle zeigt den Beschleunigungsvorgang des Rennautos Porsche 918 Spyder. Die Weg - Zeit - Kurve lässt sich in diesem Intervall annähernd durch die Funktion <math>s(t)=0,2t^2+4,5t^3</math> beschreiben.
Die folgende Tabelle zeigt den Beschleunigungsvorgang des Rennautos Porsche 918 Spyder. Die Weg - Zeit - Kurve lässt sich in diesem Intervall annähernd durch die Funktion <math>s(t)=0,2t^2+4,5t^3</math> beschreiben.

Version vom 7. Juli 2019, 17:32 Uhr

Porsche

Die folgende Tabelle zeigt den Beschleunigungsvorgang des Rennautos Porsche 918 Spyder. Die Weg - Zeit - Kurve lässt sich in diesem Intervall annähernd durch die Funktion beschreiben.

Zeit (Sekunden) Strecke (Meter)
0 0
1 4,7
2 19,6
3 45,9
4 84,8
5 137,5
6 205,2
7 289,1
8 390,4
9 510,3

Mittlere Änderungsrate

Überlegen Sie zunächst welcher physikalischen Größe die mittleren Änderungsrate in diesem Beispiel zuzuordnen ist und wie man diese berechnet. Notieren Sie Ihre Lösung in ihrem Heft.

Aufgabe 1

Bestimmen Sie mit welcher Durchschnittsgeschwindigkeit der Porsche in den folgenden Zeitintervallen gefahren ist.

a) zwischen Sekunde 1 und 2
b) zwischen Sekunde 2 und 3
c) zwischen Sekunde 3 und 4
d) Notiere deine Schätzung zu welchem Zeitpunkt der Porsche 100 km/h erreicht hat.
Überprüfe deine Ergebnisse in folgendem Applet mit Hilfe des geometrischen Zusammenhangs der mittleren Änderungsrate und der Sekantensteigung.


Momentane Änderungsrate

Aufgabe 2

Bestimmen Sie nun näherungsweise wie schnell der Porsche nach 3 Sekunden gefahren ist. Wählen Sie hierzu ein beliebiges Zeitintervall in dem die dritte Sekunde enthalten ist und verkleinere dieses. Nutzen Sie hierzu die folgende Tabelle.
a) Verkleinern Sie das Intervall mindestens 5 mal und halten Sie die Tabelle schriftlich fest.
b) Schätzen Sie die Geschwindigkeit des Porsches nach 3 Sekunden und begründe Sie Ihre Schätzung.

GeoGebra

c) Führe die Verkleinerung des Zeitintervalls nun erneut in diesem Applet durch.
Beschreibe die Veränderung der Sekante und des Werts der Sekante bei dieser Verkleinerung und halte dies schriftlich fest.
d) Was sind die Eigenschaften dieser neu entstandenen Geraden?

e) Als was lässt sich in diesem Kontext die Steigung dieser Geraden interpretieren?

Tangente
Die Geraden, die durch den Punkt P(x0|f(x0)) verläuft und die gleiche Steigung wie der Graph von f an dieser Stelle hat, nennt man Tangente.

Der Differentialquotient

Aufgabe 3

a) Schauen Sie sich die Aufgaben zur Intervallverkleinerungen aus Aufgabe 2 erneut an. Notieren Sie wie man die Verkleinerung des Intervalls Differenzenquotienten ausdrücken könnte. Das Ergebnis des neuen Quotienten soll die Steigung der Tangente sein. Hilfe einbauen!