Benutzer:PascalHänle/Das Funktionsmikroskop: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Zeile 12: Zeile 12:
}}
}}
<br />{{Vorlage:Lernpfad-Navigation|Wenn man beim Hineinzoomen in einem Punkt feststellt, dass die Funktion an dieser Stelle lokal linear ist, nennen wir die Funktion an dieser Stelle differenzierbar. }}{{Box|Aufgabe 3|Nun werden Sie mit Hilfe des Funktionenmikroskop die Steigung einer Funktion in einem bestimmten Punkt bestimmen. <br/>
<br />{{Vorlage:Lernpfad-Navigation|Wenn man beim Hineinzoomen in einem Punkt feststellt, dass die Funktion an dieser Stelle lokal linear ist, nennen wir die Funktion an dieser Stelle differenzierbar. }}{{Box|Aufgabe 3|Nun werden Sie mit Hilfe des Funktionenmikroskop die Steigung einer Funktion in einem bestimmten Punkt bestimmen. <br/>
a) Zoomen Sie vermehrt in den Punkt A hinein und schieben B durch Verkleinerung von h näher an A heran. Berechnen Sie die Steigung mit Hilfe des Differenzenquotienten. <br/>
a) Zoomen Sie vermehrt in den Punkt A hinein und schieben B durch Verkleinerung von h näher an A heran. Berechnen Sie die Steigung mit Hilfe des Differenzenquotienten. <br/> Tipp: Mit den Pfeiltasten lässt sich der Schieberegler feiner ändern.<br/>
b) Welche Probleme treten bei der Bestimmung der Steigung auf? Lassen sich diese Beheben?
b) Welche Probleme treten bei der Bestimmung der Steigung auf? Lassen sich diese Beheben?
c) Lassen Sie sich die Gerade durch den Punkt A und B anzeigen und beschreiben sie die Gerade.|Arbeitsmethode
c) Lassen Sie sich die Gerade durch den Punkt A und B anzeigen und beschreiben sie die Gerade.|Arbeitsmethode
}}
}}

Version vom 24. Juni 2019, 08:56 Uhr

Aufgabe 1

a) Zoomen Sie vermehrt an den Punkt A. Was stellen Sie fest? Beschreiben sie Ihre Beobachtung?

GeoGebra

b) Was erwarten Sie, wenn Sie an den Punkt B zoomen? Überprüfen Sie Ihre Vermutung mit dem Applet. Beschreiben Sie Ihre Vermutung und was Sie festgestellt haben.
GeoGebra

c) An welchen Stellen des Funktionsgraphen würde es beim hineinzoomen ebenfalls sie aussehen wie im Punkt B?

Aufgabe 2

In dieser Aufgabe werden Sie Funktionen untersuchen in denen die lokale Linearität nicht auf Anhieb ersichtlich ist. Geben Sie im Applet die kritischen Punkte ein die Sie untersuchen möchten und überprüfen Sie die lokale Linearität durch Hineinzoomen.
a)
b)

c)


Aufgabe 3

Nun werden Sie mit Hilfe des Funktionenmikroskop die Steigung einer Funktion in einem bestimmten Punkt bestimmen.
a) Zoomen Sie vermehrt in den Punkt A hinein und schieben B durch Verkleinerung von h näher an A heran. Berechnen Sie die Steigung mit Hilfe des Differenzenquotienten.
Tipp: Mit den Pfeiltasten lässt sich der Schieberegler feiner ändern.
b) Welche Probleme treten bei der Bestimmung der Steigung auf? Lassen sich diese Beheben?

c) Lassen Sie sich die Gerade durch den Punkt A und B anzeigen und beschreiben sie die Gerade.