Zentrische Streckung/Abbildung durch zentrische Streckung/2.Station Fortsetzung: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Main>Leonie Porzelt Keine Bearbeitungszusammenfassung |
Main>Leonie Porzelt Keine Bearbeitungszusammenfassung |
||
Zeile 71: | Zeile 71: | ||
<br> | <br> | ||
:Hier kannst du deine Vermutung mit der von Dia vergleichen: | :Hier kannst du deine Vermutung mit der von Dia vergleichen: | ||
:{{Versteckt| | :{{Versteckt|1= | ||
1. <math>\overline{ZB'}</math> ist k-mal so lang wie <math>\overline{ZB}</math>. | <div style="border: 2px solid #9C9C9C; background-color:#ffffff; padding:7px;"> | ||
2. Die Längen der Strecken <math>\overline{ZB}</math> und <math>\overline{ZB'}</math> bleiben gleich, wenn sich das Vorzeichen von k ändert.}} | [[Bild:Porzelt_Dia.jpg|left]] | ||
<br> | |||
1. <math>\overline{ZB'}</math> ist k-mal so lang wie <math>\overline{ZB}</math>.<br> | |||
2. Die Längen der Strecken <math>\overline{ZB}</math> und <math>\overline{ZB'}</math> bleiben gleich, wenn sich das Vorzeichen von k ändert. | |||
<br> | |||
</div>}} | |||
<br> | <br> | ||
<div style="border: 2px solid #00CD00; background-color:#ffffff; padding:7px;"> | <div style="border: 2px solid #00CD00; background-color:#ffffff; padding:7px;"> |
Version vom 3. Juli 2009, 20:46 Uhr
1. Station: Ähnlichkeitsabbildung - Exkurs: Weitere Beispiele einer zentrischen Streckung - 2. Station: Streckungsfaktor - Fortsetzung der 2. Station: Streckungsfaktor - 3. Station: Berechnung der Streckenlängen und des Streckungsfaktors - 4. Station: Zusammenfassung - 5. Station: Übungen - 6. Station: Wissenswertes
Fortsetzung der 2. Station: Streckungsfaktor
- Um herauszufinden was das k bedeutet, musst du dir jetzt bei dieser zentrischen Streckung anschauen, wie
- sich die Streckenlängen verändern, wenn du k veränderst. Dazu musst du dir die Streckenlängen anzeigen lassen.
Die Datei [INVALID] wurde nicht gefunden. | Was verändert sich? Orientiere dich dabei an diesen Fragen:
|
- Die Werte, die sich aus der Änderung von k ergeben, wurden in zwei Tabellen zusammengefasst.
- In der linken sind die Werte für k von 2 bis 0, in der rechten für k von -2 bis 0.
- Arbeitsauftrag:
- 1. Betrachte zunächst nur die linke Tabelle und stelle eine Vermutung auf, wie sich die Länge von ZB' ändert im Vergleich zur Länge von ZB?
- (Tipp: Betrachte auch den Wert von k!)
- 2. Vergleiche die Zeilen mit der selben Hintergrundfarbe! Was haben sie gemeinsam? Was sind die Unterschiede?
|
|
- Hier kannst du deine Vermutung mit der von Dia vergleichen:
- Vorlage:Versteckt
- Dia ist nach ihren Vermutungen total verwirrt. Sie versteht nicht warum der Wert von ZB' gleich bleibt, wenn sich das Vorzeichen von k ändert.
- Vielleicht kannst du ihr helfen, indem du ihre Fragen beantwortest:
- Prima! Dank dir versteht jetzt Dia, wie die Werte für ZB' entstehen.
- Mit deiner Hilfe und ihrer Vermutungen kann sie eine allgemeingültige Aussage machen.
- Teste durch Einsetzen der richtigen Wörter, ob auch du dahinter gekommen bist:
Die Länge von ZB ist |k|-mal so lang wie die Länge von ZB'.
- Hier siehst du was das k bedeutet. Merke es dir, denn später wirst du darüber abgefragt!
- k bezeichnet man als den Streckungsfaktor. Er gibt den Maßstab an, in dem das Bild vergrößert wurde.