Einführung in die Integralrechnung: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 1: | Zeile 1: | ||
{{Box|Lernpfad|[[Bild:Integral Titel.png|200px| | {{Box|Lernpfad|[[Bild:Integral Titel.png|200px|right]]In diesem Lernpfad können die Schüler die grundlegenden Zusammenhänge der Integralrechnung anhand vieler interaktiver Übungen entdecken. | ||
Einige Übungen sind dem gleichnamigen Lernpfad [http://www.austromath.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/ Einführung in die Integralrechnung] der österreichischen Arbeitsgruppe [http://www.austromath.at/medienvielfalt/ Medienvielfalt im Mathematikunterricht] entnommen, die aus einer Kooperation von [http://www.mathe-online.at/ mathe-online] und [http://www.geogebra.at GeoGebra] entstanden ist. | |||
<br>'''Voraussetzungen: ''' | <br>'''Voraussetzungen: ''' | ||
Zeile 14: | Zeile 16: | ||
*Wie groß ist der [http://www.austromath.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/wasserverbrauch.htm Wasserverbrauch]? | *Wie groß ist der [http://www.austromath.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/wasserverbrauch.htm Wasserverbrauch]? | ||
|} | |} | ||
Zeile 39: | Zeile 39: | ||
'''Mittelwert: 5,375''' | '''Mittelwert: 5,375''' | ||
}} | |||
*Berechnung von Unter- und Obersummen mit [http://www.austromath.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/unterobersumme_geogebra.htm GeoGebra] | *Berechnung von Unter- und Obersummen mit [http://www.austromath.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/unterobersumme_geogebra.htm GeoGebra] | ||
Zeile 51: | Zeile 49: | ||
*Berechne: <math>\int_{0}^{3}(x^2-2x-3)\, \mathrm{d}x</math>; <math>\int_{1}^{4}(x^2-2x-3)\, \mathrm{d}x</math>; <math>\int_{4}^{1}(x^2-2x-3)\, \mathrm{d}x</math> | *Berechne: <math>\int_{0}^{3}(x^2-2x-3)\, \mathrm{d}x</math>; <math>\int_{1}^{4}(x^2-2x-3)\, \mathrm{d}x</math>; <math>\int_{4}^{1}(x^2-2x-3)\, \mathrm{d}x</math> | ||
*Überprüfe die Lösung mit folgendem {{Ggb|LP_best_Int.ggb|Applet}}, in dem du mit Hilfe der Schieberegler die Integrationsgrenzen anpasst! | *Überprüfe die Lösung mit folgendem {{Ggb|LP_best_Int.ggb|Applet}}, in dem du mit Hilfe der Schieberegler die Integrationsgrenzen anpasst! | ||
Zeile 60: | Zeile 57: | ||
* Kläre die Bedeutung des Begriffs [http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/bestInt_ue2.htm "negativer Flächeninhalt"]! | * Kläre die Bedeutung des Begriffs [http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/bestInt_ue2.htm "negativer Flächeninhalt"]! | ||
*Erkläre den Unterschied zwischen dem Wert des bestimmten Integrals und dem [http://www.geogebra.org/de/upload/files/dynamische_arbeitsblaetter/lwolf/orientierteflaeche/flaeche.html Flächeninhalt zwischen Graph und x-Achse]! | *Erkläre den Unterschied zwischen dem Wert des bestimmten Integrals und dem [http://www.geogebra.org/de/upload/files/dynamische_arbeitsblaetter/lwolf/orientierteflaeche/flaeche.html Flächeninhalt zwischen Graph und x-Achse]! | ||
<br> | <br> | ||
Zeile 74: | Zeile 67: | ||
==Zusätzliche Übungsaufgaben== | ==Zusätzliche Übungsaufgaben== | ||
*[http://www.austromath.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/beispiel_unb_grenze.htm Integration mit unbekannten Grenzen] | *[http://www.austromath.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/beispiel_unb_grenze.htm Integration mit unbekannten Grenzen] | ||
Version vom 15. November 2018, 21:14 Uhr
Lernpfad
In diesem Lernpfad können die Schüler die grundlegenden Zusammenhänge der Integralrechnung anhand vieler interaktiver Übungen entdecken.
Materialien: Das bestimmte Integral; Aufgaben mit Lösung; Integralfunktion
Einige Übungen sind dem gleichnamigen Lernpfad Einführung in die Integralrechnung der österreichischen Arbeitsgruppe Medienvielfalt im Mathematikunterricht entnommen, die aus einer Kooperation von mathe-online und GeoGebra entstanden ist.
Voraussetzungen:
Zeitbedarf: etwa 3 Schulstunden
Materialien: Das bestimmte Integral; Aufgaben mit Lösung; Integralfunktion
Das Flächenproblem
Ziel der folgenden Überlegungen ist es, ein Verfahren zu entwickeln, mit dem Flächeninhalte von krummlinig begrenzten Flächen berechnet werden können.
|
Unter- und Obersumme
- Begriffsklärung Unter- und Obersumme
- Aufgabe: Gegeben ist die Funktion f(x) = 0.25 x².
- Zerlege das Intervall [0;4] in 8 gleichlange Teilintervalle und skizziere den Graphen und die Rechtecke in dein Heft.
- Berechne die zugehörige Ober- und Untersumme.
- Gib auch das arithmetische Mittel von Ober- und Untersumme als Näherungswert für die Fläche unter dem Funktionsgraphen an.
- Lösung:
0 0,5 1 1,5 2 2,5 3 3,5 4 -----------------------------------------------------------f(x)
- Berechnung von Unter- und Obersummen mit GeoGebra
Das bestimmte Integral
- Informiere dich im Arbeitsblatt "Das bestimmte Integral" über die Definition des Begriffs "bestimmtes Integral".
- Auf dem Arbeitsblatt sind für einige einfache Funktionen die bestimmten Integrale über dem Intervall [a;b] angegeben. Finde anschauliche Erklärungen für die Herleitung und berechne die bestimmten Integrale für die angegeben Werte! Lösung
- Berechne: ; ;
- Überprüfe die Lösung mit folgendem Applet, in dem du mit Hilfe der Schieberegler die Integrationsgrenzen anpasst!
Flächenberechnung
- Aufgaben zur Flächenberechnung mit Geogebra
- Kläre die Bedeutung des Begriffs "negativer Flächeninhalt"!
- Erkläre den Unterschied zwischen dem Wert des bestimmten Integrals und dem Flächeninhalt zwischen Graph und x-Achse!
Integralfunktion
- Bearbeite die Punkte 1 bis 6 des dynamischen Arbeitsblatts zur Integralfunktion. Halte die Ergebnisse in deinem Heft fest.
- Überlege: Welche Funktionen der Kurvenschar sind keine Integralfunktionen?
- Bearbeite nun als Zusammmenfassung das Arbeitsblatt "Die Integralfunktion".
Zusätzliche Übungsaufgaben
Für Interessierte
- Hauptsatz der Differential- und Integralrechnung mit ausführlichem Beweis
- Informiere dich im Internet über die Geschichte der Integralrechnung.
- Bei welchen Fragestellungen kommt die Integralrechung zum Einsatz? Finde möglichst vielfältige Beispiele.
<metakeywords>ZUM2Edutags,ZUM-Wiki,Mathematik-digital,Einführung in die Integralrechnung,Mathematik,Einführung,Integralrechnung,12. Klasse,Oberstufe,Lernpfad</metakeywords>