Integralrechnung/Flächen bestimmen: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Dickesen
Keine Bearbeitungszusammenfassung
Main>Dickesen
Keine Bearbeitungszusammenfassung
Zeile 2: Zeile 2:
<br>
<br>
{{Übung|
{{Übung|
# Bestimme den Flächeninhalt unter dem Graphen der Funktion <math>f(x)=x^2</math> im Intervall <math>[1;3]</math> auf mindestens eine Nachkommastelle genau.
# Bestimme den Flächeninhalt unter dem Graphen der Funktion <math>f(x)=x^2</math> im Intervall <math>[1;3]</math> mindestens auf die Einerstelle genau.
# Bestimme den Flächeninhalt zwischen dem Graphen der Funktion <math>g(x)=\sqrt{x}</math> und der x-Achse im Intervall <math>[0;8]</math> auf mindestens eine Nachkommastelle genau.
# Bestimme den Flächeninhalt zwischen dem Graphen der Funktion <math>g(x)=\sqrt{x}</math> (in Geogebra wird die Wurzelfunktion mit sqrt(x) bezeichnet) und der x-Achse im Intervall <math>[0;8]</math> mindestens auf die Einerstelle genau.
}}
}}
<br>
<br>

Version vom 18. Oktober 2009, 13:15 Uhr

Als Übung sollst Du im Folgenden die Fläche unter vorgegebenen Graphen mit der Software Geogebra bestimmen. Falls Du keine Erfahrung mit Geogebra hast, wird Dir die Anleitung weiter unten auf dieser Seite weiterhelfen!

Übung
  1. Bestimme den Flächeninhalt unter dem Graphen der Funktion im Intervall mindestens auf die Einerstelle genau.
  2. Bestimme den Flächeninhalt zwischen dem Graphen der Funktion (in Geogebra wird die Wurzelfunktion mit sqrt(x) bezeichnet) und der x-Achse im Intervall mindestens auf die Einerstelle genau.



GeoGebra


Vorlage:Kastendesign1