Trigonometrische Funktionen/Didaktischer Kommentar: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Karlo Haberl
Keine Bearbeitungszusammenfassung
 
(141 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
*[[Trigonometrische Funktionen 2|Zurück zur Einführung]]
{{Lernpfad Trigonometrische Funktionen}}
*[[Trigonometrische Funktionen|Zurück zur Einführung]]


----
----


=Didaktischer Kommentar=
===Didaktischer Kommentar===
 
==Allgemeines==
 
===Kurzinformation===
 
Schulstufe:  10. Jahrgangsstufe in Bayern, 6. Schulstufe in Österreich<br>
Dauer: 4 - 6 Stunden <br>
Lernziel: Erkennen der Auswirkung der Variation von Parametern im Funktionsterm auf die Graphen der Sinus- und Kosinusfunktion und umgekehrt.
 
===Technische Voraussetzungen===
 
Die GeoGebra-Applets benötigen Java. Dies kann kostenlos von [http://www.java.com/de/ www.java.com] heruntergeladen werden.
 
Kenntnisse und Handhabung von GeoGebra erleichtern die Arbeit am Lernpfad. GeoGebra kann kostenlos von http://www.geogebra.org/cms/ www.geogebra.at] herungergeladen werden.
 
==Aufbau des Lernpfads==


Der Lernpfad besteht aus zwei Stationen und einer Physik-Ecke.
Der Lernpfad besteht aus zwei Stationen und einer Physik-Ecke.
Zeile 27: Zeile 12:


Die GeoGebra-Applets bieten vielfältige Möglichkeiten, mathematische  Zusammenhänge experimentell zu erkunden. So können die SchülerInnen in der ersten Station selbstständig den Einfluss der Variation der Parameter einer allgemeinen Sinus- und Kosinusfunktion auf das Aussehen ihrer Graphen erforschen und erleben. Wie man umgekehrt aus den Graphen die zugehörigen Parameter bestimmt, erfahren die SchülerInnen in der Station zwei. Um das unterschiedliche Lerntempo auszugleichen, bietet am Ende der zweiten Station eine Zusatzaufgabe den schnelleren SchülerInnen die Möglichkeit, die evtl. übrige Zeit sinnvoll zu nutzen. Normalerweise werden die SchülerInnen die Stationen in der vorgegebenen Reihenfolge vollständig bearbeiten. Aber es ist natürlich auch möglich, nur eine der Stationen in den Unterricht einzubauen. In der Physik-Ecke können die SchülerInnen - anhand von Anwendungsbeispielen aus der Physik - die in Station 1 und 2 erworbenen mathematischen Kenntnisse festigen und lernen dabei auch unterschiedliche Variablenbezeichnungen zu identifizieren.
Die GeoGebra-Applets bieten vielfältige Möglichkeiten, mathematische  Zusammenhänge experimentell zu erkunden. So können die SchülerInnen in der ersten Station selbstständig den Einfluss der Variation der Parameter einer allgemeinen Sinus- und Kosinusfunktion auf das Aussehen ihrer Graphen erforschen und erleben. Wie man umgekehrt aus den Graphen die zugehörigen Parameter bestimmt, erfahren die SchülerInnen in der Station zwei. Um das unterschiedliche Lerntempo auszugleichen, bietet am Ende der zweiten Station eine Zusatzaufgabe den schnelleren SchülerInnen die Möglichkeit, die evtl. übrige Zeit sinnvoll zu nutzen. Normalerweise werden die SchülerInnen die Stationen in der vorgegebenen Reihenfolge vollständig bearbeiten. Aber es ist natürlich auch möglich, nur eine der Stationen in den Unterricht einzubauen. In der Physik-Ecke können die SchülerInnen - anhand von Anwendungsbeispielen aus der Physik - die in Station 1 und 2 erworbenen mathematischen Kenntnisse festigen und lernen dabei auch unterschiedliche Variablenbezeichnungen zu identifizieren.
==Genderaspekte==


Mit Blick auf die Genderproblematik wurde bei den Stationen 1 und 2 darauf geachtet, dass sie Mädchen und Jungen gleichermaßen ansprechen. Die fächerübergreifende Physik-Ecke dürfte hingegen aber mehr auf die Interessen von Jungen ausgerichtet sein.
Mit Blick auf die Genderproblematik wurde bei den Stationen 1 und 2 darauf geachtet, dass sie Mädchen und Jungen gleichermaßen ansprechen. Die fächerübergreifende Physik-Ecke dürfte hingegen aber mehr auf die Interessen von Jungen ausgerichtet sein.
==Aufgaben und Lösungen==


Zu fast allen Aufgaben sind Lösungen angegeben. Die SchülerInnen haben so die Möglichkeit, ihre Antworten selbst zu kontrollieren. Die Lösungen stehen allerdings nicht unmittelbar nach der jeweiligen Aufgabe, sondern am Ende der zu bearbeitenden Seite. So soll verhindert werden, dass sich die SchülerInnen gleich nach dem Lesen der Aufgabe die Lösung anschauen.
Zu fast allen Aufgaben sind Lösungen angegeben. Die SchülerInnen haben so die Möglichkeit, ihre Antworten selbst zu kontrollieren. Die Lösungen stehen allerdings nicht unmittelbar nach der jeweiligen Aufgabe, sondern am Ende der zu bearbeitenden Seite. So soll verhindert werden, dass sich die SchülerInnen gleich nach dem Lesen der Aufgabe die Lösung anschauen.
==Avatar==


Um SchülerInnen entgegenzukommen, denen es schwer fällt, die Bedeutung schriftlicher Texte zu verstehen, weil etwa ihre Lesekompetenz nur schwach ausgeprägt ist oder sie an Legastenie oder einer Sehbehinderung leiden, wurden in den Lernpfad Videos eingefügt, mit denen sie sich den Text von einem Avatar „vorlesen“ lassen können. Zu diesem Zweck sollte ihnen allerdings ein Kopfhörer zur Verfügung stehen.
Um SchülerInnen entgegenzukommen, denen es schwer fällt, die Bedeutung schriftlicher Texte zu verstehen, weil etwa ihre Lesekompetenz nur schwach ausgeprägt ist oder sie an Legastenie oder einer Sehbehinderung leiden, wurden in den Lernpfad Videos eingefügt, mit denen sie sich den Text von einem Avatar „vorlesen“ lassen können. Zu diesem Zweck sollte ihnen allerdings ein Kopfhörer zur Verfügung stehen.


==Methodische Anleitung für den Unterricht==
===Methodische Anleitung für den Unterricht===


Es gibt verschiedene Möglichkeiten, diesen Lernpfad in den Lernprozess der SchülerInnen zu integrieren. Er kann zum selbstständigen Erarbeiten des Stoffes in Expertenteams beziehungsweise in Gruppen-, Partner- oder Einzelarbeit eingesetzt werden. Darüber hinaus  kann er auch gut zur Wiederholung des Stoffes im Unterricht oder zu Hause verwendet werden.  
Es gibt verschiedene Möglichkeiten, diesen Lernpfad in den Lernprozess der SchülerInnen zu integrieren. Er kann zum selbstständigen Erarbeiten des Stoffes in Expertenteams beziehungsweise in Gruppen-, Partner- oder Einzelarbeit eingesetzt werden. Darüber hinaus  kann er auch gut zur Wiederholung des Stoffes im Unterricht oder zu Hause verwendet werden.  
===Arbeiten in Expertenteams===


Die Station eins wurde so konzipiert, dass sie das Arbeiten in Expertenteams unterstützt. Für die Station zwei und für die Physik-Ecke empfiehlt sich Gruppenarbeit.  
Die Station eins wurde so konzipiert, dass sie das Arbeiten in Expertenteams unterstützt. Für die Station zwei und für die Physik-Ecke empfiehlt sich Gruppenarbeit.  


Beim Arbeiten in Expertenteams handelt es sich um eine spezielle Form von Gruppenarbeit, wobei sich jede Gruppe zunächst mit einem anderen Aspekt eines bestimmten Themas beschäftigt. Zur Einteilung der Gruppen können die vorgeschlagenen Karten verwendet werden. Sie sollten am besten auf farbiges Papier gedruckt, laminiert und zugeschnitten werden. Alle SchülerInnen erhalten eine Karte. Zunächst werden die SchülerInnen mit demselben Buchstaben auf der Karte zusammen arbeiten. Damit sich nicht gleich zu Beginn der Stunde alle SchülerInnen umsetzen müssen, ist es sinnvoll SchülerInnen, die neben einander sitzen, Karten mit demselben Buchstaben zu geben. Hinweise für die SchülerInnen für das Arbeiten in Expertenteams sind im Lernpfad integriert. Nun untersucht jede Gruppe den Einfluss eines anderen Parameters auf das Aussehen des Graphen. Jeder Schüler dieser Gruppe ist dann Experte für den Einfluss eines Parameters. Es wird ein erster Hefteintrag notiert. Dazu sollten die SchülerInnen ihr Heft im Querformat verwenden, eine Überschrift notieren und vier Spalten für den Einfluss je eines Parameters anlegen. Nach der Arbeitsphase in diesen Gruppen werden die SchülerInnen mit Hilfe der Zahlen auf den Karten in neue Gruppen eingeteilt. Die neuen Gruppen bestehen aus vier SchülerInnen, genauer je einem Experten für einen der vier Parameter. Die SchülerInnen sollen nun auch die Auswirkungen der anderen Parameter erforschen, sich über deren Einfluss austauschen und die Spalten des Hefteintrages vervollständigen. Danach werden gemeinsam Aufgaben bearbeitet. Diese sind so konzipiert, dass zu ihrer Lösung meist das Expertenwissen der einzelnen SchülerInnen benötigt wird.
Beim Arbeiten in Expertenteams handelt es sich um eine spezielle Form von Gruppenarbeit, wobei sich jede Gruppe zunächst mit einem anderen Aspekt eines bestimmten Themas beschäftigt. Zur Einteilung der Gruppen können die vorgeschlagenen Karten verwendet werden. Sie sollten am besten auf farbiges Papier gedruckt, laminiert und zugeschnitten werden. Alle SchülerInnen erhalten eine Karte. Zunächst werden die SchülerInnen mit demselben Buchstaben auf der Karte zusammen arbeiten. Damit sich nicht gleich zu Beginn der Stunde alle SchülerInnen umsetzen müssen, ist es sinnvoll SchülerInnen, die neben einander sitzen, Karten mit demselben Buchstaben zu geben. Hinweise für die SchülerInnen für das Arbeiten in Expertenteams sind im Lernpfad integriert. Nun untersucht jede Gruppe den Einfluss eines anderen Parameters auf das Aussehen des Graphen. Jeder Schüler dieser Gruppe ist dann Experte für den Einfluss eines Parameters. Es wird ein erster Hefteintrag notiert. Dazu sollten die SchülerInnen ihr Heft im Querformat verwenden, eine Überschrift notieren und vier Spalten für den Einfluss je eines Parameters anlegen. Nach der Arbeitsphase in diesen Gruppen werden die SchülerInnen mit Hilfe der Zahlen auf den Karten in neue Gruppen eingeteilt. Die neuen Gruppen bestehen aus vier SchülerInnen, genauer je einem Experten für einen der vier Parameter. Die SchülerInnen sollen nun auch die Auswirkungen der anderen Parameter erforschen, sich über deren Einfluss austauschen und die Spalten des Hefteintrages vervollständigen. Danach werden gemeinsam Aufgaben bearbeitet. Diese sind so konzipiert, dass zu ihrer Lösung meist das Expertenwissen der einzelnen SchülerInnen benötigt wird.
===Partner- und/oder Gruppenarbeit===
In Station 1 arbeiten Expertenteams (bereits integriert) oder "Pferdestall" bei der Bearbeitung der Tabelle „Einfluss von a, b, c und d. <br>
Dabei bedeutet "Pferdestall":<br>
1. Die Schüler werden in zwei Gruppen eingeteilt, z. B. linke Hälfte und rechte Hälfte. Alle Schüler der linken Hälfte untersuchen den Einfluss von a, alle Schüler der rechten Hälfte den Einfluss von b.<br>
2. Alle Schüler sollen nacheinander jeweils Pferd oder Stall sagen. <br>
3. Die "Ställe" bleiben auf ihrem Platz sitzen und die "Pferde" stehen auf und setzen sich auf einen beliebigen Platz eines "Pferdes" der anderen Hälfte. So erhält jeder Schüler einen neuen Nachbarn, der Kenntnisse über den Einfluss eines anderen Parameters besitzt.<br>
4. Je zwei Schüler (Nachbarn) erklären sich nacheinander das neue Wissen.
5. Die Schüler werden wieder in zwei Gruppen eingeteilt, z. B. linke Hälfte und rechte Hälfte. Alle Schüler der linken Hälfte untersuchen nun den Einfluss von c, alle Schüler der rechten Hälfte den Einfluss von d.<br>
6. "Die Pferde reiten wieder zu ihrem Stall zurück". Jetzt sitzt wieder jeder auf seinem Platz und die ursprünglichen Nachbarn erklären sich nacheinander das neue Wissen.
Station 2 wird dann in Partnerarbeit oder Gruppenarbeit gemacht.<br>
Am besten teilt man die Schüler in Gruppen von 3 bis 4 Personen ein. Ein Gruppenmitglied ist der Leiter und liest die Aufgaben vor, ein anderes Gruppenmitglied ist der Zeitwächter. Der Zeitrahmen für jede Aufgabe beträgt 10 Minuten, anschließend stehen jeweils fünf Minuten zur Verfügung, in denen u. a. folgende Fragen diskutiert werden können: <br>
• Welches Ziel hat die Aufgabe? <br>
• Was wird geübt?<br>
Anschließend werden die Aufgaben bearbeitet
===Am Ende einer Station / des Lernpfads===
Am Ende einer Station oder am Ende des Lernpfades wird "Pferdestall" und/ oder "Mathe-Millionär" als Spiel angeboten
'''"Pferdestall"''':<br>
1. Jeder Schüler überlegt sich eine Frage zum Inhalt und schreibt diese oben auf einen Zettel.<br>
2. Alle Schüler sollen nacheinander jeweils Pferd oder Stall sagen. <br>
3. Die "Ställe" bleiben auf ihrem Platz sitzen und die "Pferde" stehen auf und setzen sich auf einen beliebigen Platz eines anderen "Pferdes". So erhält jeder Schüler einen anderen Nachbarn.<br>
4. Je zwei Schüler (Nachbarn) stellen sich gegenseitig die Fragen, falten die Zettel in der Mitte und notieren gemeinsam die Antwort auf der Rückseite. Die Zettel werden getauscht.<br>
5. "Die Pferde reiten wieder zu ihrem Stall zurück". Jetzt sitzt wieder jeder auf seinem Platz und die ursprünglichen Nachbarn stellen sich gegenseitig die notierten Fragen. Die Antwort steht zur Kontrolle bereits auf der Rückseite.“
'''"Mathe-Millionär"'''<br>
1. Jeder Schüler überlegt sich eine Frage zum Thema und notiert diese zusammen mit vier Antwortmöglichkeiten (A, B, C, D) auf einem Zettel. Dabei kreuzt er die richtige Antwort an und ergänzt ob er die Frage als leicht, mittel oder schwer einschätzt.<br>
2. ''Hinweis für S'': Taktisch ist es sinnvoll, sich eine möglichst schwierige Frage zu überlegen, da man selbst – wenn die Frage vom Lehrer gestellt wird – die Antwort weiß, die anderen S aber mit höherer Wahrscheinlichkeit nicht.<br>
3. Die Zettel werden eingesammelt und vom Lehrer grob der Schwierigkeit nach sortiert. Dabei können ein paar leichte Fragen für einen eventuellen zweiten Durchgang aufgehoben werden.<br>
4. Die Schüler zerteilen ein Blatt in vier kleine Blätter, auf denen sie je einen Buchstaben A, B, C und D schreiben. Alle Schüler stehen auf.
5. Der Lehrer liest eine Frage vor. Beim Satz „Bitte entscheidet Euch jetzt!“ heben alle Schüler gleichzeitig den gewählten Buchstaben nach oben. Der Lehrer sagt die richtige Antwort und die Schüler mit einer falschen setzen sich. Jetzt kann eine Erklärung folgen oder die nächste Frage.
6. Gewonnen haben die letzten ein bis drei noch stehenden Schüler.


[[Trigonometrische_Funktionen/Einteilung der Expertenteams|Expertenteamkarten zum Ausdrucken]]
[[Trigonometrische_Funktionen/Einteilung der Expertenteams|Expertenteamkarten zum Ausdrucken]]
Zeile 91: Zeile 31:
----
----


*[[Trigonometrische Funktionen 2|Zurück zur Einführung]]
*[[Trigonometrische Funktionen|Zurück zur Einführung]]

Aktuelle Version vom 26. September 2018, 10:45 Uhr


Didaktischer Kommentar

Der Lernpfad besteht aus zwei Stationen und einer Physik-Ecke.

  • Station 1: Einfluss der Parameter (2-3 Std.)
  • Station 2: Bestimmung der Funktionsgleichung und mehr (1-2 Std.)
  • Physik-Ecke: Anwendungen in der Physik (1-2 Std.)

Die GeoGebra-Applets bieten vielfältige Möglichkeiten, mathematische Zusammenhänge experimentell zu erkunden. So können die SchülerInnen in der ersten Station selbstständig den Einfluss der Variation der Parameter einer allgemeinen Sinus- und Kosinusfunktion auf das Aussehen ihrer Graphen erforschen und erleben. Wie man umgekehrt aus den Graphen die zugehörigen Parameter bestimmt, erfahren die SchülerInnen in der Station zwei. Um das unterschiedliche Lerntempo auszugleichen, bietet am Ende der zweiten Station eine Zusatzaufgabe den schnelleren SchülerInnen die Möglichkeit, die evtl. übrige Zeit sinnvoll zu nutzen. Normalerweise werden die SchülerInnen die Stationen in der vorgegebenen Reihenfolge vollständig bearbeiten. Aber es ist natürlich auch möglich, nur eine der Stationen in den Unterricht einzubauen. In der Physik-Ecke können die SchülerInnen - anhand von Anwendungsbeispielen aus der Physik - die in Station 1 und 2 erworbenen mathematischen Kenntnisse festigen und lernen dabei auch unterschiedliche Variablenbezeichnungen zu identifizieren.

Mit Blick auf die Genderproblematik wurde bei den Stationen 1 und 2 darauf geachtet, dass sie Mädchen und Jungen gleichermaßen ansprechen. Die fächerübergreifende Physik-Ecke dürfte hingegen aber mehr auf die Interessen von Jungen ausgerichtet sein.

Zu fast allen Aufgaben sind Lösungen angegeben. Die SchülerInnen haben so die Möglichkeit, ihre Antworten selbst zu kontrollieren. Die Lösungen stehen allerdings nicht unmittelbar nach der jeweiligen Aufgabe, sondern am Ende der zu bearbeitenden Seite. So soll verhindert werden, dass sich die SchülerInnen gleich nach dem Lesen der Aufgabe die Lösung anschauen.

Um SchülerInnen entgegenzukommen, denen es schwer fällt, die Bedeutung schriftlicher Texte zu verstehen, weil etwa ihre Lesekompetenz nur schwach ausgeprägt ist oder sie an Legastenie oder einer Sehbehinderung leiden, wurden in den Lernpfad Videos eingefügt, mit denen sie sich den Text von einem Avatar „vorlesen“ lassen können. Zu diesem Zweck sollte ihnen allerdings ein Kopfhörer zur Verfügung stehen.

Methodische Anleitung für den Unterricht

Es gibt verschiedene Möglichkeiten, diesen Lernpfad in den Lernprozess der SchülerInnen zu integrieren. Er kann zum selbstständigen Erarbeiten des Stoffes in Expertenteams beziehungsweise in Gruppen-, Partner- oder Einzelarbeit eingesetzt werden. Darüber hinaus kann er auch gut zur Wiederholung des Stoffes im Unterricht oder zu Hause verwendet werden.

Die Station eins wurde so konzipiert, dass sie das Arbeiten in Expertenteams unterstützt. Für die Station zwei und für die Physik-Ecke empfiehlt sich Gruppenarbeit.

Beim Arbeiten in Expertenteams handelt es sich um eine spezielle Form von Gruppenarbeit, wobei sich jede Gruppe zunächst mit einem anderen Aspekt eines bestimmten Themas beschäftigt. Zur Einteilung der Gruppen können die vorgeschlagenen Karten verwendet werden. Sie sollten am besten auf farbiges Papier gedruckt, laminiert und zugeschnitten werden. Alle SchülerInnen erhalten eine Karte. Zunächst werden die SchülerInnen mit demselben Buchstaben auf der Karte zusammen arbeiten. Damit sich nicht gleich zu Beginn der Stunde alle SchülerInnen umsetzen müssen, ist es sinnvoll SchülerInnen, die neben einander sitzen, Karten mit demselben Buchstaben zu geben. Hinweise für die SchülerInnen für das Arbeiten in Expertenteams sind im Lernpfad integriert. Nun untersucht jede Gruppe den Einfluss eines anderen Parameters auf das Aussehen des Graphen. Jeder Schüler dieser Gruppe ist dann Experte für den Einfluss eines Parameters. Es wird ein erster Hefteintrag notiert. Dazu sollten die SchülerInnen ihr Heft im Querformat verwenden, eine Überschrift notieren und vier Spalten für den Einfluss je eines Parameters anlegen. Nach der Arbeitsphase in diesen Gruppen werden die SchülerInnen mit Hilfe der Zahlen auf den Karten in neue Gruppen eingeteilt. Die neuen Gruppen bestehen aus vier SchülerInnen, genauer je einem Experten für einen der vier Parameter. Die SchülerInnen sollen nun auch die Auswirkungen der anderen Parameter erforschen, sich über deren Einfluss austauschen und die Spalten des Hefteintrages vervollständigen. Danach werden gemeinsam Aufgaben bearbeitet. Diese sind so konzipiert, dass zu ihrer Lösung meist das Expertenwissen der einzelnen SchülerInnen benötigt wird.

Expertenteamkarten zum Ausdrucken