Potenzfunktionen - 4. Stufe: Unterschied zwischen den Versionen
Main>Hans-Georg Weigand |
Main>Andreas Bauer Keine Bearbeitungszusammenfassung |
||
Zeile 4: | Zeile 4: | ||
== Die Graphen der Funktionen mit f(x) = x<sup>-1/n</sup>, n <small>∈</small> IN == | == Die Graphen der Funktionen mit f(x) = x<sup>-1/n</sup>, n <small>∈</small> IN == | ||
Es sei stets | Es sei stets <math>\mathbb N_0 = \left\{ 0,1,2,\dots \right\}</math> und <math>\mathbb N = \left\{ 1,2,3,\dots \right\}</math>, insbesondere also <math>\mathbb N_0 \neq \mathbb N</math>.<br /> | ||
'''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen ''negativen'' Stammbruch der Form <math>\textstyle - \frac{1}{n}</math> mit <math>n \in \mathbb{N}</math> als Exponenten haben.''' Für diese Art der Exponenten gilt: <math>-1\leq \textstyle -\frac{1}{n}< 0</math>. | '''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen ''negativen'' Stammbruch der Form <math>\textstyle - \frac{1}{n}</math> mit <math>n \in \mathbb{N}</math> als Exponenten haben.''' Für diese Art der Exponenten gilt: <math>-1\leq \textstyle -\frac{1}{n}< 0</math>. | ||
Version vom 22. Februar 2009, 16:06 Uhr
Die Graphen der Funktionen mit f(x) = x-1/n, n ∈ IN
Es sei stets und , insbesondere also .
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen negativen Stammbruch der Form mit als Exponenten haben. Für diese Art der Exponenten gilt: .
Vergleich mit Funktionen aus Stufe 3
Die Datei [INVALID] wurde nicht gefunden.
Exponenten, Brüche und Potenzgesetze
Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponten. Denke dabei insbesondere an folgenden Zusammenhang:
- Für eine reelle Zahl und eine natürliche Zahl wird definiert:
- für
Auf unsere Situation angewandt ergibt sich:
Vorlage:Arbeiten |
Potenzfunktionen und ihre Umkehrfunktionen
Beispiel
Es sei eine Potenzfunktion, definiert durch . Gesucht ist die Umkehrfunktion von .
ergibt sich aus durch Auflösen nach . Es ist: Vertauschen von und ergibt schließlich die gesuchte Funktion: . |
Die Datei [INVALID] wurde nicht gefunden. |
Beispiel
Es sei eine Potenzfunktion, nun definiert durch mit Definitionsbereich ID = IR+. Gesucht ist wieder ihre Umkehrfunktion .
Auflösen nach ergibt: |
Die Datei [INVALID] wurde nicht gefunden. |
Hinweis: man beachte besonders hier die unterschiedliche Bedeutung von und !
Vergleich mit Potenzfunktionen der Stufe 1
Im Zusammenhang mit den Umkehrfunktionen dieser Art kann es sinnvoll sein, sich die Potenzfunktionen der Stufe 1 noch einmal vor Augen zu führen. Hier kannst Du direkt zur Stufe 1 springen.
Zusammenfassung
Die Umkehrfunktionen von Potenzfunktionen mit für sind Potenzfunktionen mit
Die Umkehrfunktionen von Potenzfunktionen mit für sind Potenzfunktionen mit .
*Zusammenfassung: Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S"-Prinzip
freiwillig
Die "5 S" lauten:
- Spiegeln
- Strecken
- Stauchen
- Schieben
- Superponieren
Die Datei [INVALID] wurde nicht gefunden.
*Zum Weiterdenken: Mit Funktionen malen
(freiwillig)
Die Datei [INVALID] wurde nicht gefunden. Das obenstehende Bild ist vollständig aus Potenzfunktionen der Form mit zusammengesetzt.
|