Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Peter Hofbauer
Keine Bearbeitungszusammenfassung
Main>Peter Hofbauer
Keine Bearbeitungszusammenfassung
Zeile 18: Zeile 18:
# Gibt es Punkte, die allen Graphen dieser Bauart gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre>
# Gibt es Punkte, die allen Graphen dieser Bauart gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre>
:{{Lösung versteckt|
:{{Lösung versteckt|
: zu 1) Der Definitionsbereich ist <math>{\Bbb D}={\Bbb R}^{\geq 0}</math>. Der kleinste Funktionswert y<math>=</math>0 wird für x<math>=</math>0 angenommen; von da aus steigen die blauen Graphen streng monoton über alle Grenzen an.
: zu 1) Der Definitionsbereich ist IR<sup>+</sup><sub>0</sub>. Der kleinste Funktionswert y<math>=</math>0 wird für x<math>=</math>0 angenommen; von da aus steigen die blauen Graphen streng monoton über alle Grenzen an.
: zu 2) Man findet die Punkte (0;0) und (1;1) unabhängig von n in allen Graphen. '''Begründung:''' Es gilt 0<sup>r</sup> <math>=</math>0 und 1<sup>r</sup> <math>=</math>1 für alle <math>r \in \mathbb{R}\backslash\{0 \}</math>.
: zu 2) Man findet die Punkte (0;0) und (1;1) unabhängig von n in allen Graphen. '''Begründung:''' Es gilt 0<sup>r</sup> <math>=</math>0 und 1<sup>r</sup> <math>=</math>1 für alle <math>r \in \mathbb{R}\backslash\{0 \}</math>.
}}
}}

Version vom 17. Januar 2011, 17:28 Uhr

Vorlage:Potenzfunktionen


Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form mit als Exponenten haben.

Die Graphen der Funktionen f(x) = x1/n, n IN*

Funktionsgraph kennenlernen

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.

Vergleich mit Funktionen aus Stufe 2

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.

Bezeichungen: Potenzen und Wurzeln

Wir betrachten hier Potenzfunktionen mit , Vorlage:Merksatz

Den Grund für diese Bezeichnungen zeigen die folgenden Beispiele:


Beispiel: Quadratwurzeln

Beispielsweise ergibt sich die Länge der Diagonalen B in einem Quadrat der Seitenlänge a1 über den Satz des Pythagoras zu:

Die Lösung ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.

Auch die Länge der Raumdiagonale C im Einheitswürfel (das ist ein Würfel mit der Kantenlänge a=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:

Die Lösung ist also angeben.

Beispiel: Kubikwurzel

Das Volumen V eines Würfels (lat.: "cubus") der Kantenlänge s5 ergibt sich über:

Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen V27 durch ziehen der 3.-Wurzel:

Einfluss von Parametern

Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten


*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen

(*Zusatzinformation, freilwillige Ergänzung)

Einschränkung auf IR+0

Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung:

Wegen

(-2)3 -8

erscheint das richtig zu sein, allerdings kann diese Festlegung zu Widersprüchen führen, wie das folgende Beispiel zeigt:


Um solche Fälle von Nicht-Eindeutigkeiten, aber auch um Fallunterscheidungen bei für gerade und ungerade n zu vermeiden, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die nicht-negativen reellen Zahlen ein, also:

mit und

Wurzelfunktion auf ganz IR

Will man eine Wurzelfunktion g dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g derart, dass

.

Dann gilt: IDg = IR.


Maehnrot.jpg Als nächstes erfährst du etwas über Potenzfunktionen, die auch negative Stammbrüchen im Exponenten haben.

Datei:Pfeil.gif   Hier geht es weiter.