Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen
Main>Jan Wörler Keine Bearbeitungszusammenfassung |
Main>Jan Wörler |
||
Zeile 47: | Zeile 47: | ||
Offenbar kann man zum Beispiel wegen | Offenbar kann man zum Beispiel wegen | ||
* <math>\sqrt[3]{-27}=\sqrt[3]{-3\cdot -3 \cdot -3} = \sqrt[3]{-3^3} = \sqrt[3]{-3}^3 = -3 | * <math>\sqrt[3]{-27}=\sqrt[3]{-3\cdot -3 \cdot -3} = \sqrt[3]{-3^3} = \sqrt[3]{-3}^3 = -3, und</math> | ||
die Wurzelfunktionen <math>f(x)=\sqrt[n]{x}</math> zumindest bei ungeradem n sowohl für positive als auch negative x definieren. | * <math>\sqrt[3]{ 27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3</math> | ||
die Wurzelfunktionen <math>f(x)=\sqrt[n]{x}</math> zumindest bei ungeradem n sowohl für positive als auch negative x definieren. | |||
Allerdings kann das zu Wiedersprüchen führen; folgende Rechnung zeigt die Problematik: | |||
* <math>-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2.</math> | * <math>-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2.</math> | ||
Version vom 19. Januar 2009, 16:16 Uhr
Die Graphen der Funktionen mit f(x) = x1/n, n ∈ IN
Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN0 =/= IN.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .
Vergleiche mit Funktionen aus Stufe 2
- Welche Gemeinsamkeiten gibt es? Welche Unterschiede?
- Gibt es Punkte, die beiden Funktionsscharen gemeinsam sind?
Beschreibe den Definitionsbreich ID der Funktion f(x) = x^(1/n) in Abhängigkeit von n.
Die Datei [INVALID] wurde nicht gefunden.
Potenzen und Wurzeln
Eine Funktion mit der Gleichung mit heißt Wurzelfunktion.
Potenzfunktionen der Bauart und Wurzelfunktionen hängen eng zusammen, denn es gilt:
Darin ist die n-te Wurzel festgelegt über:
Beispiele:
- , aber
- , nicht definiert.
- , aber auch
Die Datei [INVALID] wurde nicht gefunden.
Definitionsbereich der Wurzelfunktionen
Einschränkung auf IR+
Offenbar kann man zum Beispiel wegen
die Wurzelfunktionen zumindest bei ungeradem n sowohl für positive als auch negative x definieren.
Allerdings kann das zu Wiedersprüchen führen; folgende Rechnung zeigt die Problematik:
Um solche Fälle von Uneindeutigkeit zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die positiven reelle Zahlen ein, also:
mit und
Wurzelfunktion auf ganz IR
Will man eine Wurzelfunktion dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g(x) derart, dass
, dann gilt: IDg = IR.