Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Main>Jan Wörler Keine Bearbeitungszusammenfassung |
Main>Jan Wörler Keine Bearbeitungszusammenfassung |
||
Zeile 22: | Zeile 22: | ||
* <math>16 = \begin{cases} 4\cdot 4 &= 4^2\\ -4 \cdot (-4) &= (-4)^2 \end{cases} \Rightarrow \sqrt{16} = \pm 4</math>, aber | * <math>16 = \begin{cases} 4\cdot 4 &= 4^2\\ -4 \cdot (-4) &= (-4)^2 \end{cases} \Rightarrow \sqrt{16} = \pm 4</math>, aber | ||
* <math>-16 = \begin{cases} (-1)\cdot 4\cdot 4 &= (-1)\cdot 4^2\\ (-1)\cdot (-4) \cdot (-4) &= (-1)\cdot (-4)^2 \end{cases} \Rightarrow \sqrt{-16}=4\cdot\sqrt{-1}</math>, nicht definiert! | * <math>-16 = \begin{cases} (-1)\cdot 4\cdot 4 &= (-1)\cdot 4^2\\ (-1)\cdot (-4) \cdot (-4) &= (-1)\cdot (-4)^2 \end{cases} \Rightarrow \sqrt{-16}=\pm 4\cdot\sqrt{-1}</math>, nicht definiert! | ||
* <math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3</math>, aber auch | * <math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3</math>, aber auch |
Version vom 19. Januar 2009, 11:07 Uhr
Die Graphen der Funktionen mit f(x) = x1/n, n ∈ IN
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form mit als Exponenten haben.
Die Datei [INVALID] wurde nicht gefunden.
Potenzen und Wurzeln
Potenzfunktionen der Bauart und Wurzelfunktionen hängen eng zusammen, denn es gilt:
Darin ist die n-te Wurzel festgelegt über:
Beispiele:
- , aber
- , nicht definiert!
- , aber auch
Die Datei [INVALID] wurde nicht gefunden.