Potenzfunktionen - 1. Stufe: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Main>Hans-Georg Weigand Keine Bearbeitungszusammenfassung |
Main>Hans-Georg Weigand Keine Bearbeitungszusammenfassung |
||
Zeile 15: | Zeile 15: | ||
#* Monotonie | #* Monotonie | ||
#* größte und kleinste Funktionswerte | #* größte und kleinste Funktionswerte | ||
# Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. | # Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> | ||
HINWEIS: Mauszeiger auf Graph - rechte Maustaste - "Spur an" anklicken | |||
# Beschreibe die Veränderung der Graphen beim Übergang von f(x) = x<sup>2</sup> zu f(x) = x<sup>4</sup>, dann die beim Übergang von f(x) = x<sup>4</sup> zu f(x) = x<sup>6</sup> usw.! | # Beschreibe die Veränderung der Graphen beim Übergang von f(x) = x<sup>2</sup> zu f(x) = x<sup>4</sup>, dann die beim Übergang von f(x) = x<sup>4</sup> zu f(x) = x<sup>6</sup> usw.! | ||
# Wie ändern sich die y-Werte bei f(x) = x<sup>n</sup>, n gerade, wenn der x-Wert ver-k-facht wird? LÖSUNG! | # Wie ändern sich die y-Werte bei f(x) = x<sup>n</sup>, n gerade, wenn der x-Wert ver-k-facht wird? LÖSUNG! |
Version vom 5. Januar 2009, 15:41 Uhr
Die Graphen der Funktionen mit f(x) = xn, n ∈ IN
Gerade Potenzen
Wir betrachten zunächst die Graphen der Funktionen mit f(x) = xn, wenn n eine gerade Zahl ist, als n = 2, 4, 6, ..
Vorlage:Arbeiten |
Die Datei [INVALID] wurde nicht gefunden. |
Ungerade Potenzen
Wir betrachten nun die Graphen der Funktionen mit f(x) = xn, wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..
Die Datei [INVALID] wurde nicht gefunden. |
Teste dein Wissen
Die Graphen von f(x) = a*xn, mit a ∈ IR
Wir betrachten jetzt die Funktionen mit f(x) = a*xn, n eine natürliche Zahl, a eine reelle Zahl.
Vorlage:Arbeiten | Die Datei [INVALID] wurde nicht gefunden. |
Die Datei [INVALID] wurde nicht gefunden. |