Laplace-Wahrscheinlichkeit wiederholen und vertiefen/Efron: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Florian Bogner
K (ziegen)
Main>Florian Bogner
KKeine Bearbeitungszusammenfassung
Zeile 71: Zeile 71:




{{Aufgaben-M|4.4|Bestimme die Gewinnwahrscheinlichkeiten aller verschiedenen Möglichkeiten mit zwei Würfeln von Efron gegeneinander zu spielen.  
{{Aufgaben-M|4.3|Bestimme die Gewinnwahrscheinlichkeiten aller verschiedenen Möglichkeiten mit zwei Würfeln von Efron gegeneinander zu spielen.  


Übertrage die Tabelle in dein Heft und trage die Werte ein. Gibt es einen besten Würfel?}}
Übertrage die Tabelle in dein Heft und trage die Werte ein. Gibt es einen besten Würfel?}}
Zeile 134: Zeile 134:


'''Für Interessierte:'''
'''Für Interessierte:'''
{{Aufgaben-M|4.5|Hans und Franz wollen bei Pia und Anna mitspielen. Wie groß ist die Wahrscheinlichkeit für jeden der Würfel, dass er gewinnt, wenn alle vier Würfel geworfen werden?}}
{{Aufgaben-M|4.4|Hans und Franz wollen bei Pia und Anna mitspielen. Wie groß ist die Wahrscheinlichkeit für jeden der Würfel, dass er gewinnt, wenn alle vier Würfel geworfen werden?}}


[[Datei:4bunteWürfel.jpg|rechts|400px]]
[[Datei:4bunteWürfel.jpg|rechts|400px]]
Zeile 154: Zeile 154:




{{Aufgabe|Spielt das Spiel zu viert nach! Würfelt mindestens zehnmal und vergleicht eure Gewinnstatistik mit den berechneten Wahrscheinlichkeiten.}}
{{Aufgabe|'''Für Interessierte:'''
 
Spielt das Spiel zu viert nach! Würfelt mindestens zehnmal und vergleicht eure Gewinnstatistik mit den berechneten Wahrscheinlichkeiten.}}





Version vom 7. September 2009, 12:41 Uhr

Die „Würfel von Efron“

Vorlage:Kasten Mathematik


Aufgabe
Findest du das Spiel fair?

Um dies herauszufinden, bastle dir die „Würfel von Efron“ ganz einfach nach. Nimm dazu beispielsweise vier helle Spielwürfel und beschrifte diese mit einem Folienstift so wie oben dargestellt, oder beklebe deine Würfel mit Papier. Jetzt spiele mit einem Freund oder einer Freundin nach den Spielregeln.

Wie ihr sicherlich herausgefunden habt, scheinen manche Würfel besser zu sein als andere. Wenn du die nächsten Aufgaben bearbeitest, wirst du erkennen, dass man mit einer gewissen Taktik sein Glück in diesem Spiel ganz schön beeinflussen kann.


Vorlage:Aufgaben-M

Lösungshinweise: Vorlage:Versteckt


Vorlage:Aufgaben-M

AnnaundPia.jpg


Lösungshinweise: Vorlage:Versteckt


  • Da Anna sicher eine 3 würfelt, gewinnt sie nur wenn Pia eine 0 würfelt.
Nach Aufgabe 4.1 ist diese Wahrscheinlichkeit  
Das Ereignis „Pia gewinnt“ ist das Gegenereignis dazu und berechnet sich demnach folgendermaßen:


  • Dies lässt sich auch aus dem folgenden Baumdiagramm erkennen:

PiaundAnna.jpg


  • Betrachte noch folgende 36-Felder-Tafel:
36 Felder Tafel rot grün.jpg
Hier werden alle möglichen Würfelpaare abgebildet.
Beispiel: zeigt der grüne Würfel 0, gewinnte der rote und die passenden Felder wurden rot markiert.
Zählt man die Felder einfach ab, so folgt:
Der grüne Würfel gewinnt mit einer Wahrscheinlichkeit von    gegen den roten Würfel.
Das stimmt mit unserem Baumdiagramm und der Rechnung überein!


Vorlage:Aufgaben-M

EfronTabelleLeer.jpg
Die Tabelleneinträge stehen für die Wahrscheinlichkeit, dass der Würfel in der Zeile gegen den in der Spalte gewinnt.
Beispiel: Die Werte aus Aufgabe 4.2 sind schon eingetragen.


Hast du hierbei noch Schwierigkeiten, erklärt dir folgende Lösungshilfe ein weiteres Beispiel ganz genau: Vorlage:Versteckt


EfronGewinntabelle.jpg

Nein, es gibt keinen besten Würfel. Man findet zu jedem Würfel einen besseren, mit dem man mit einer Wahrscheinlichkeit von  gewinnt.

Die beste Strategie zu gewinnen ist also höflich zu sein!


Für Interessierte: Vorlage:Aufgaben-M

4bunteWürfel.jpg

Lösungshilfe: Vorlage:Versteckt


Baum3.jpg


  Der gelbe Würfel gewinnt auf jeden Fall, falls er die 6 zeigt.
  Dann sind die anderen Würfel uninteressant und der Pfad ist schon zu Ende.

  Falls er die 2 zeigt, muss der nächstbeste Würfel gesucht werden.





  Als nächstes kann der blaue Würfel gewinnen, falls er 5 zeigt. Der Pfad ist zu Ende.





  Wenn nicht, könnte der grüne Würfel gewinnen, falls er die 4 zeigt.





  Hat bis jetzt keiner gewonnen, gewinnt schließlich der rote Würfel.



Aufgabe

Für Interessierte:

Spielt das Spiel zu viert nach! Würfelt mindestens zehnmal und vergleicht eure Gewinnstatistik mit den berechneten Wahrscheinlichkeiten.




Vorlage:Kasten Mathematik