Laplace-Wahrscheinlichkeit wiederholen und vertiefen/Vorwissen: Unterschied zwischen den Versionen
Main>Florian Bogner K (vor/zurück) |
Main>Florian Bogner KKeine Bearbeitungszusammenfassung |
||
Zeile 129: | Zeile 129: | ||
'''(b)''' Wie viele Ereignisse gibt es bei dem Zufallsexperiment „Werfen von drei Münzen“? | '''(b)''' Wie viele Ereignisse gibt es bei dem Zufallsexperiment „Werfen von drei Münzen“? | ||
}} | }} | ||
Wenn wir von einem Würfel sprechen, meinen wir in der Regel einen {{Hintergrund_gelb|Laplace-Würfel}}. Dieser hat sechs Seiten und ist symmetrisch. Das bedeutet, dass mit der gleichen Wahrscheinlichkeit 1,2,3,4,5 oder 6 gewürfelt wird. Der Würfel ist also fair! | |||
Version vom 31. August 2009, 13:18 Uhr
Zurück zur Startseite des Lernpfades.
Wiederholung: an Vorwissen anküpfen
Zufallsexperimente
Weißt du noch, was genau ein Zufallsexperiment ist?
Versuche dich zu erinnern und schreibe eine gute Beschreibung des Begriffs "Zufallsexperiment" auf dein Blatt!
Informiere dich wenn nötig in deinen Unterlagen aus der Schule oder recherchiere im Internet danach.
Hier kannst du du deine Überlegungen anhand einer sehr guten Beschreibung überprüfen: Vorlage:Versteckt
(Ziehung der Lottozahlen) (Schere, Stein, Papier) (!Wettervorhersage) (!Elfmeterschießen im WM-Finale) (dreimaliges Werfen eines Würfels) (ein Marmeladenbrot fällt vom Tisch) (!Benotung deiner Klassenarbeit) (Werfen einer Münze) (Werfen eines gezinkten Würfels) (!Geschwindigkeitsmessung der Polizei) (!physikalisches Experiment)
Durch Markieren der grauen Fläche wird ein Lösungsvorschlag sichtbar: Es wird festgelegt, dass die Münze auf den gebeugten Zeigefinger gelegt und mit dem Daumen in die Luft geschnipst werden soll. Die Münze wird gefangen und auf den Handrücken gelegt. Die Seite gewinnt, welche nach der Landung oben liegt.
oder: Beantworte nun folgende Fragen und klicke anschließend auf Korrektur!
Das war ja noch einfach! / Hast du alles gewusst? -->
Ergebnis und Ereignis
an Standardbeispielen die Grundlagen wiederholen
- Baumdiagramm (mehrstufig, Vereinfachung)
- Zählprinzip (Produktregel)
- Begriffe und Schreibweisen (Ereignis, Ergebnis, Ergebnisraum, Gegenereignis)-->
Zur mathematischen Beschreibung von Zufallsexperimenten benötigt man eine formale Sprache. In der folgenden Aufgabe, kannst du am Beispiel des Würfelwurfs kontrollieren, ob du die richtige Schreibweise beherrschst.
Ergebnis | ||
Ereignis | ||
Elementarereignis | ||
Ergebnismenge | ||
Gegenereignis | ||
unmögliches Ereignis | ||
Mächtigkeit des Ergebnisraums |
- unmögliches Ereignis<formelapplet width="50" height="50" InputInactiveColor="d0d0b0" solution="ZIP-504b03041400080008000379f03a0000000000000000000000000a000000666f726d656c2e67726f63886630623060b0642862c807c2128658060d0613a0880183264334832198558c2c0a00504b07084bbf4b372400000032000000504b010214001400080008000379f03a4bbf4b3724000000320000000a0000000000000000000000000000000000666f726d656c2e67726f504b05060000000001000100380000005c0000000000" />
Lösungshinweise: Vorlage:Versteckt
Hier findest du eine kleine Hilfe: Vorlage:Versteckt
Wenn wir von einem Würfel sprechen, meinen wir in der Regel einen Vorlage:Hintergrund gelb. Dieser hat sechs Seiten und ist symmetrisch. Das bedeutet, dass mit der gleichen Wahrscheinlichkeit 1,2,3,4,5 oder 6 gewürfelt wird. Der Würfel ist also fair!