Flächeninhalt des Rechtecks: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Karl Kirst
K (katfix)
Main>Maria Eirich
(Vorlage in Lernpfadkopt)
Zeile 1: Zeile 1:
{{Diese Seite|ist einer von mehreren [[Flächeninhalt#Lernpfade|Lernpfaden zum Thema Flächeninhalt]].}}
{{Lernpfad-M|<big>'''Flächeninhalt des Rechtecks'''</big>
{{Lernpfad-M|<big>'''Flächeninhalt des Rechtecks'''</big>
:'''Zielsetzung:''' Schüler entdecken Schritt für Schritt die Formel des Flächeninhalts und lernen damit zu rechnen.
:'''Zielsetzung:''' Schüler entdecken Schritt für Schritt die Formel des Flächeninhalts und lernen damit zu rechnen.
Zeile 6: Zeile 5:
:'''Zeitbedarf:''' ca. 70 Minuten
:'''Zeitbedarf:''' ca. 70 Minuten
:'''Materialen:''' Computer (mit [[Java]] und [[GeoGebra]]) und Heft.
:'''Materialen:''' Computer (mit [[Java]] und [[GeoGebra]]) und Heft.
{{Diese Seite|ist einer von mehreren [[Flächeninhalt#Lernpfade|Lernpfaden zum Thema Flächeninhalt]].}}
}}
}}
__NOTOC__
__NOTOC__

Version vom 6. Januar 2011, 20:01 Uhr

Vorlage:Lernpfad-M


Flächeninhalt des Rechtecks

1. Arbeitsauftrag - Quiz über Rechtecke

Vorlage:Hinweis Zeit

Nun wollen wir zu Beginn erst einmal testen, was ihr denn noch über Vierecke wisst. Dazu könnt ihr jetzt ein Quiz machen. Quiz zum Viereck





2. Arbeitsauftrag - Kästchen zählen

Vorlage:Hinweis Zeit Ihr kennt bereits die verschiedenen geometrischen Figuren. Heute wollen wir uns mit dem Flächeninhalt von geometrischen Figuren beschäftigen.

Betrachtet dazu die Zeichnungen und ermittelt, aus wie vielen Kästchen die Rechtecke bestehen.




1. Rechteck

Rechteck01.png

Hast du richtig gezählt?

Das Rechteck besteht aus ...

16 Kästchen.
18 Kästchen.
20 Kästchen.


2. Rechteck

Rechteck02.png

Hast du richtig gezählt?

Das Rechteck besteht aus ...

8 Kästchen.
6 Kästchen.
7 Kästchen.


3. Rechteck

Vorlage:Hinweis Achtung

Rechteck03.png

Hast du richtig gezählt?

Das Rechteck besteht aus ...

8 1/2 Kästchen.
9 Kästchen.
8 Kästchen.


3. Arbeitsauftrag - Zeichnen

Vorlage:Hinweis Zeit Fertigt nun folgende Aufgabe in euerem Heft an: Zeichnet ein Rechteck mit Flächeninhalt 16 Kästchen.





Flächeninhalt eines Rechtecks

Ihr seht im nächsten Bild 3 verschiedene Rechtecke abgebildet: Mehrere Rechtecke.png

Wie ihr leicht sehen könnt, besteht das Rechteck R1 aus 6 Kästchen. Gleichzeitig sind die Seitenlängen des Rechtecks a = c = 3cm und b = d = 2cm.

Das Rechteck R2 besteht aus 2 Kästchen. Wie sind denn hier die Seitenlängen?

Das Rechteck R3 besteht aus 12 Kästchen. Könnt ihr auch hier die Seitenlängen angeben?

Was fällt euch dabei auf?

4. Arbeit im Heft

Hefteintrag

Vorlage:Hinweis Zeit

Übertragt die Rechtecke in euer Heft. Schreibt dabei unter jedes Rechteck die Seitenlängen und den Flächeninhalt.

Aus unseren Beobachtungen sehen wir, dass die Anzahl der Kästchen eines Rechtecks

immer gleich des Produkts der beiden Seitenlängen ist.

Wir notieren:

Im Rechteck R1 haben wir die Seitenlängen a = 2 und b = 3 und der Flächeninhalt beträgt 2 x 3 = 6
Im Rechteck R2 haben wir die Seitenlängen e = 2 und f = 1 und der Flächeninhalt beträgt 2 x 1 = 2
Im Rechteck R3 haben wir die Seitenlängen i = 4 und j = 3 und der Flächeninhalt beträgt 4 x 3 = 12



Vorlage:Hinweis Achtung






Daher übertragen wir noch folgenden Satz in unserer Heft

Satz: Vorlage:Rot-gelb

Ein anschauliches Beispiel

Zum Schluss könnt ihr nun noch beobachten, wie sich der Flächeninhalt eines Rechtecks ändert, wenn man die Seitenlängen verändert. Wenn ihr die Punkte der Schieberegler e und f nach links und rechts bewegt, ändert sich auch der Flächeninhalt des Rechtecks.


GeoGebra


Verschiedenes zum Flächeninhalt des Rechtecks

Andere geometrische Figuren

Wie könnte man den Flächeninhalt von diesen Figuren berechnen ohne die Kästchen zu zählen?

Vorlage:Hinweis Zeit

Vieleck1.png


Vieleck2.png

Maßeinheiten

Vorlage:Hinweis Zeit Bisher haben wir uns nur mit der Angabe des Flächeninhalt durch Kästchen beschäftigt. Nun wollen wir uns mit den Maßeinheiten bei Flächenberechnung beschäftigen. Dazu wollen wir aber erst einmal die Maßeinheiten der Streckenmessung wiederholen.



Wiederholung

Ihr kennt bereits:

Einheit kurz Umrechnung Grafische Darstellung
Millimeter mm SSS Millimeter.jpg
Zentimeter cm 1 cm = 10 mm Zentimeter.jpg
Dezimter: dm dm 1 dm = 10 cm = 100 mm Dezimeter.jpg
Meter m 1 m = 10 dm = 100 cm = 1000 mm Meter.jpg
Kilometer km 1 km = 1000 m = 10000 dm = 100000 cm = 1000000 mm


Maßeinheiten beim Flächeninhalt des Rechtecks

Betrachten wir nur eine Fläche, zum Beispiel unser lilafarbenes Rechteck von oben. Rechteck22.jpg

Die Seite a ist 2 cm lang (ebenso die Seite c) Die Seite b ist 4 cm lang (ebenso die Seite d)

Aus unserer Formel wissen wir, dass hier gilt F = 2 x 4 = 8. Aber welche Einheit ordnen wir nun unserem Rechteck zu?


Die Seiten a und b (bzw. c und d) können wir in cm angeben. Aber das Ergebnis, eine Fläche, lässt sich nicht durch cm ausdrücke, da eine Fläche nicht gleich einer Strecke ist!!!


Verdeutlichen wir uns das anhand einer Zeichnung.

Hier seht ihr eine Strecke der Länge 8 cm und ein Rechteck mit Flächeninhalt 8 __ .

Rechteck und Fläche.png

An diesem Beispiel könnt ihr erkennen dass die Steckeneinheit "cm" nicht zu der Fläche des Rechtecks passt. Schließlich multiplizieren wir bei einer Fläche ja eine Seitenlänge mit der anderen und rechnen somit auch mm x mm, bzw. cm x cm oder dm x dm ... Daher brauchen wir für die Fläche die Maßeinheiten wie mm², sprich Quadratmillimeter, da wir mm mit mm multiplizieren.


Vorlage:Hinweis Achtung


Es funktioniert also 5cm x 7cm = 35 cm² zu rechnen. Will man hingegen 4cm x 25 mm berechnen, so muss man eine der beiden Einheiten umwandeln.

Es bieten sich hier also folgende 2 Möglichkeiten an: 4cm x 25mm = 40mm x 25mm = 1000mm² oder 4cm x 2,5cm = 10cm²




Vorlage:Hinweis Achtung


Am obigen Beispiel seht ihr sehr gut, dass das Ergebnis des Produkts der Seitenlängen 4cm und 25mm gleich 1000mm² bzw. 10cm² ist. Die Tabelle oben zeigt, dass 1cm = 10mm ist. Somit ist 1cm² = 1 (cm x cm) = 1x (10mm x 10mm) = 100mm². Ebenso gilt für beispielsweise 2dm² = 2 x (dm x dm) = 2 x (10cm x 10cm) = 2 x (100cm²) = 200 cm² und hierfür gilt wiederum: 200 cm² = 200 x (cm x cm) = 200 x (10mm x 10mm) = 200 x (100mm²) = 20000mm²


Verdeutlichen wir und dies nochmal anhand einer Tabelle:

Einheit bei Flächen Produkt Umrechnung
Quadratmillimeter mm x mm = mm² 1mm²
Zentimeter cm x cm = cm² 1cm² = 100mm²
Dezimter: dm dm x dm = dm² 1dm² = 100cm² = 10000mm²
Meter m x m = m² 1m² = 100dm² = 10000cm² = 1000000mm²
Kilometer km x km = km² 1km² = 1000000m² = 100000000dm² = 10000000000cm² = 1000000000000mm²

Aufgaben

Vorlage:Hinweis Zeit


1. Verwandle in die in Klammern angegebene Einheit.

a) 8 dm² ( cm² )

b) 27 m² ( dm² )

c) 43 km² ( m² )

d) 18 cm² ( mm² )


2. Drücke in der in Klammern angegebenen Einheit aus.

a) 3800 cm² ( dm² )

b) 5900 dm² ( m² )

c) 470000 m² ( km² )

d) 25 km² ( cm² )


3. Berechne jeweils den Flächeninhalt der Rechtecke in einer geeigneten Einheit.

a) b = 5 cm, c = 70 dm

b) a = 1200 mm, b = 9 dm

c) c = 5 km, d = 3000 m

d) a = 50 cm, d = 200 mm

e) a = 1200 dm, b = 15 m (Gib hier den Flächeninhalt in cm² an.)

f) b = 5 m, c= 200 cm (Gib hier den Flächeninhalt in dm² an.)

5. Arbeitsauftrag - Anwendungsaufgabe Kinderzimmer

Vorlage:Hinweis Zeit

Nora und Paul besichtigen die neue Wohnung, in die sie umziehen wollen.

Paul misst die beiden Kinderzimmer aus: Das erste ist 5 m lang und 4 m breit, das zweite 6 m lang und 3 m breit.

Nora sagt: "Beide Zimmer sind gleich groß, denn 5 plus 4 ist 9 und 6 plus 3 ist auch 9."

Was meinst du? Fertigt für eure Lösung im Heft eine Skizze an.


6. Arbeitsauftrag - Check dein Wissen

Vorlage:Hinweis Zeit

Vorlage:Hinweis Achtung

1 Wie verändern sich der Flächeninhalt eines Rechtecks, wenn man eine Seitenlänge verdoppelt?

Der Flächeninhalt bleibt gleich.
Der Flächeninhalt verdoppelt sich
Das Rechteck ist dann viermal so groß.

2 Der Umfang eines Rechtecks bleibt gleich wenn man eine beliebige Seitenlängen a verdoppelt und die andere Seitenlänge halbiert

wahr
falsch

3 Der Flächeninhalt eines Rechtecks bleibt gleich wenn man eine beliebige Seitenlängen a verdoppelt und die andere Seitenlänge halbiert

wahr
falsch

4 Die Werte von Flächeninhalt und Umfang sind beim Quadrat gleich groß

wahr
falsch

5 Der Umfang eines Rechtecks bleibt gleich, wenn man eine Seite um 2cm verkleinert, die andere Seite dafür aber um 2 cm verlängert. (Wichtig: Wir betrachten hier nur Rechtecke, bei denen beide Seiten mindestens 3 cm lang sind!!!)

wahr
falsch

6 Der Flächeninhalt eines Rechtecks bleibt gleich, wenn man eine Seite um 2cm verkleinert, die andere Seite dafür aber um 2 cm verlängert. (Wichtig: Wir betrachten hier nur Rechtecke, bei denen beide Seiten mindestens 3 cm lang sind!!!)

wahr
falsch

7 Die folgenden vier Fragen beziehen sich auf folgenden Sachverhalt: Ein Rechteck ist 4m lang und 9m breit. Welche Aussagen sind richtig?

Der Flächeninhalt beträgt 32m²

wahr
falsch

8 Der Umfang beträgt 26 cm²

wahr
falsch

9 Man kann 18 kleinere Rechtecke mit Flächeninhalt 2m² einbauen.

wahr
falsch

10 Ein Quadrat mit Seitenlänge 6m hat den gleichen Umfang.

wahr
falsch


Für die ganz Schnellen bzw. für zu Hause

Klickt auf den folgenden Link und bearbeitet die Aufgaben zum Flächeninhalt. Vorlage:Hinweis Hausaufgabe1

Benutzer:Markus Bergmann







Vorlage:Mitgewirkt