Flächeninhalt des Rechtecks: Unterschied zwischen den Versionen
Main>Franziska Engerer |
Main>Franziska Engerer Keine Bearbeitungszusammenfassung |
||
Zeile 113: | Zeile 113: | ||
Wie könnte man den Flächeninhalt von diesen Figuren berechnen? | Wie könnte man den Flächeninhalt von diesen Figuren berechnen? | ||
{{Hinweis Zeit|Für diese Aufgabe habt ihr 8 Minuten Zeit!}} | |||
[[Bild:Vieleck1.png]] [[Bild:Vieleck2.png]] | [[Bild:Vieleck1.png]] [[Bild:Vieleck2.png]] | ||
= Für die ganz Schnellen bzw. für zu Hause = | = Für die ganz Schnellen bzw. für zu Hause = |
Version vom 13. Dezember 2008, 10:17 Uhr
Flächeninhalt des Rechtecks
1. Arbeitsauftrag - Quiz über Rechtecke
Nun wollen wir zu Beginn erst einmal testen, was ihr denn noch über Vierecke wisst. Dazu könnt ihr jetzt ein Quiz machen. Quiz zum Viereck
2. Arbeitsauftrag - Kästchen zählen
Vorlage:Hinweis Zeit Ihr kennt bereits die verschiedenen geometrischen Figuren. Heute wollen wir uns mit dem Flächeninhalt von geometrischen Figuren beschäftigen.
Betrachtet dazu die Zeichnungen und ermittelt, aus wie vielen Kästchen die Rechtecke bestehen.
1. Rechteck
2. Rechteck
3. Rechteck
3. Arbeitsauftrag - Zeichnen
Vorlage:Hinweis Zeit Fertigt nun folgende Aufgabe in euerem Heft an: Zeichnet ein Rechteck mit Flächeninhalt 16 Kästchen.
Flächeninhalt eines Rechtecks
Ihr seht im nächsten Bild 3 verschiedene Rechtecke abgebildet:
Wie ihr leicht sehen könnt, besteht das Rechteck R1 aus 6 Kästchen. Gleichzeitig sind die Seitenlängen des Rechtecks a = c = 3cm und b = d = 2cm.
Das Rechteck R2 besteht aus 2 Kästchen. Wie sind denn hier die Seitenlängen?
Das Rechteck R3 besteht aus 12 Kästchen. Könnt ihr auch hier die Seitenlängen angeben?
Was fällt euch dabei auf?
4. Arbeitsauftrag
Hefteintrag
Übertragt die Rechtecke in euer Heft. Schreibt dabei unter jedes Rechteck die Seitenlängen und den Flächeninhalt.
Aus unseren Beobachtungen sehen wir, dass die Anzahl der Kästchen eines Rechtecks
immer gleich des Produkts der beiden Seitenlängen ist.
- Im Rechteck R1 haben wir die Seitenlängen a = 2 und b = 3 und der Flächeninhalt beträgt 2 x 3 = 6
- Im Rechteck R2 haben wir die Seitenlängen e = 2 und f = 1 und der Flächeninhalt beträgt 2 x 1 = 2
- Im Rechteck R3 haben wir die Seitenlängen i = 4 und j = 3 und der Flächeninhalt beträgt 4 x 3 = 12
Daher übertragen wir noch folgenden Satz in unserer Heft:
Flächeninhalt des Rechtecks
- Die Fläche eines Rechtecks ergibt sich aus dem Produkt der Seitenlängen.
- Es gilt also: F = a x b
Ein anschauliches Beispiel
Zum Schluss könnt ihr nun noch beobachten, wie sich der Flächeninhalt eines Rechtecks ändert, wenn man die Seitenlängen verändert. Wenn ihr die Punkte der Schieberegler e und f nach links und rechts bewegt, ändert sich auch der Flächeninhalt des Rechtecks. Rechteck
Weitere Aufgaben zum Flächeninhalt des Rechtecks
Andere geometrische Figuren
Wie könnte man den Flächeninhalt von diesen Figuren berechnen?
Für die ganz Schnellen bzw. für zu Hause
Klickt auf den folgenden Link und bearbeitet die Aufgaben zum Flächeninhalt. Vorlage:Hinweis Hausaufgabe1