Quadratische Funktionen erkunden/Die Scheitelpunktform: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Carsten
Keine Bearbeitungszusammenfassung
Main>Carsten
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
{{Quadratische Funktionen erkunden}}
{{Quadratische Funktionen erkunden}}
<big>'''Achtung Baustelle! An diesem Teil des Lernpfads wird derzeit gearbeitet.'''</big>
<big>'''Achtung Baustelle! An diesem Teil des Lernpfads wird derzeit gearbeitet.'''</big>
'''
<!-- 0. Beschreibung/Zieltransparenz usw. -->


'''Herzlich Willkommen zum Lernpfad "Quadratische Funktionen erkunden - die Scheitelpunktform"!''' <br />
'''Herzlich Willkommen zum Lernpfad "Quadratische Funktionen erkunden - die Scheitelpunktform"!''' <br />
Zeile 13: Zeile 10:


Bei einigen Aufgaben und Übungen benötigst du das Arbeitsheft. Viel Erfolg!<br />
Bei einigen Aufgaben und Übungen benötigst du das Arbeitsheft. Viel Erfolg!<br />
<!-- 2. Erste einfache Anwendung der SPF + Motivation-->


{{Aufgaben|1|'''Für diese Aufgabe benötigst du dein Arbeitsheft''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
{{Aufgaben|1|'''Für diese Aufgabe benötigst du dein Arbeitsheft''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
Zeile 25: Zeile 20:


<popup name="Lösungsvorschläge">
<popup name="Lösungsvorschläge">
Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben.
{| class="wikitable"
{| class="wikitable"
|-
|-

Version vom 28. November 2016, 16:52 Uhr

Achtung Baustelle! An diesem Teil des Lernpfads wird derzeit gearbeitet.

Herzlich Willkommen zum Lernpfad "Quadratische Funktionen erkunden - die Scheitelpunktform"!

In diesem Kapitel des Lernpfads wirst du Experte für die Scheitelpunktform quadratischer Funktionen. Du kannst
1. selbstständig mithilfe der vorliegenden Applets reale Flugkurven, Gebäude oder Phänomene aus der Natur modellieren,
2. in einem Zuordnungsquiz selbst überprüfen, ob du alles verstanden hast, und
3. abschließend in Partnerarbeit Flugkurven in verschiedenen Sportarten untersuchen.

Bei einigen Aufgaben und Übungen benötigst du das Arbeitsheft. Viel Erfolg!

Aufgabe 1

Für diese Aufgabe benötigst du dein Arbeitsheft Notizblock mit Bleistift.

a) Finde Werte für a, d und e, sodass f(x) die Kurve auf dem Bild möglichst gut beschreibt. Entscheide dich für drei Hintergrundbilder deiner Wahl und notiere den Funktionsterm in deinem Arbeitsheft. Wenn du noch weiter arbeiten möchtest, kannst du auch einige der übrigen Hintergundbilder bearbeiten.

b) Kontrolliere die Terme mithilfe der Lösungsvorschläge und beantworte anschließend die Reflexionsfragen in deinem Arbeitsheft.


<popup name="Lösungsvorschläge"> Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben.

Hintergrundbild Lösungsvorschlag Parameter a Parameter d Parameter e
Angry Birds -0,15 ≤ a ≤ -0,13 6,8 ≤ d ≤ 7,2 4.7 ≤ e ≤ 5
Golden Gate Bridge 0,03 ≤ a ≤ 0,05 5 ≤ d ≤ 6,4 0,8 ≤ e ≤ 1,1
Springbrunnen -0.4 ≤ a ≤ -0.3 4,7 ≤ d ≤ 5 5,1 ≤ e ≤ 5,5
Elbphilharmonie 0.3 ≤ a ≤ 0.36 5,7 ≤ d ≤ 6 3,2 ≤ e ≤ 3,6
Gebirgsformation -0.3 ≤ a ≤ -0.1 5,1 ≤ d ≤ 5,7 2,1 ≤ e ≤ 2,5
Motorrad-Stunt -0.1 ≤ a ≤ -0.04 7,3 ≤ d ≤ 8,1 5,7 ≤ e ≤ 6,2
Basketball -0.35 ≤ a ≤ -0.29 6,2 ≤ d ≤ 6,8 6,2 ≤ e ≤ 6,7


.</popup>


Merke
Funktionen, die mithilfe der Funktionsgleichung
beschrieben werden können, heißen quadratische Funktionen. Diese Darstellungsform nennt man Scheitelpunktform (im Gegensatz zur Normalform), da sich direkt aus dem Term der Scheitelpunkt ablesen lässt. Er hat die Koordinaten .


Aufgabe 2

Für diese Aufgabe benötigst du dein Forscherheft Notizblock mit Bleistift.

a) Lies den Infotext und denke dir anschließend ein Beispiel einer quadratischen Funktion in Scheitelpunktform aus. Notiere den Term und fertige per Hand eine Skizze des Funktionsgraphen im Koordinatensystem auf deinem AB an. Zur Kontrolle kannst du das oben stehende GeoGebra-Applet nutzen.



Aufgabe 3

Für diese Aufgabe benötigst du dein Forscherheft Notizblock mit Bleistift.

a) Das folgende Quiz beschäftigt sich mit dem Wechsel zwischen verschiedenen Darstellungsarten (Funktionsterm, Graph und Situationen) quadratischer Funktionen (in Scheitelpunktform). Beantworte die Fragen bitte selbstständig. Es ist jeweils genau eine Antwort richtig. Mit einem Klick in das weiße Kästchen oben rechts erhältst du den Vollbildmodus.


b) Die Lösungsübersicht am Ende verrät dir, was du schon gut kannst und was du noch üben musst. Wenn du dich noch nicht sicher genug im Umgang mit den verschiedenen Darstellungsarten fühlst, kannst du das Quiz gerne erneut durchführen. Formuliere anschließend basierend auf deinen Fehlern (bzw. potentiellen Fehlerquellen) einen Merksatz auf dem AB, der beschreibt, auf welche Aspekte man besonders achten sollte und dir bei zukünftigen Darstellungswechseln hilfreich sein kann.



Aufgabe 4
{{{2}}}


Zur Abrundung deiner Arbeit mit dem Lernpfad findest du eine Abschlussreflexion auf deinem AB.


--Carsten (Diskussion) 15:24, 5. Nov. 2016 (CET)