Rechnen mit Quadratwurzeln: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
K (→‎Vollständiges Radizieren: Korrektur eines Rechtschreibfehlers)
 
(5 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 13: Zeile 13:




 
==Vollständiges Radizieren==
== Vollständiges Radizieren ==
Die Quadratwurzel '''<math>\sqrt{r}</math>''' aus einer rationalen Zahl ist diejenige, nicht negative Zahl, deren '''Quadrat r''' ergibt.  
Die Quadratwurzel '''<math>\sqrt{r}</math>''' aus einer rationalen Zahl ist diejenige, nicht negative Zahl, deren '''Quadrat r''' ergibt.  
'''r''' heißt '''Radikant''' der Wurzel.  
'''r''' heißt '''Radikand''' der Wurzel.  


===Bsp.:===
===Bsp.:===
Zeile 24: Zeile 23:
[http://www.zum.de/dwu/depothp/hp-math/hpmwu01.htm Einfach Übung]
[http://www.zum.de/dwu/depothp/hp-math/hpmwu01.htm Einfach Übung]


==Addition und Subtraktion ==
==Addition und Subtraktion==
Summen und Differenzen von Quadratwurzeln lassen sich nur dann zusammenfassen, wenn die Radikanten gleich sind.
Summen und Differenzen von Quadratwurzeln lassen sich nur dann zusammenfassen, wenn die Radikanden gleich sind.


===Bsp.:===  
===Bsp.:===  
Zeile 37: Zeile 36:
[http://www.zum.de/dwu/depothp/hp-math/hpmwu13.htm 3. Übung]
[http://www.zum.de/dwu/depothp/hp-math/hpmwu13.htm 3. Übung]


==Multiplikation und Division ==
==Multiplikation und Division==
Für das Produkt von Quadratwurzeln gilt:
Für das Produkt von Quadratwurzeln gilt:
<math> \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} </math> für <math> a, b \ge 0 </math>
<math> \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} </math> für <math> a, b \ge 0 </math>
Zeile 44: Zeile 43:
<math>\frac {\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} </math> für <math> a \ge 0 \quad und \quad  b>0 </math>
<math>\frac {\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} </math> für <math> a \ge 0 \quad und \quad  b>0 </math>


=== Multiplikation===
===Multiplikation===
[http://www.zum.de/dwu/depothp/hp-math/hpmwu21.htm 1. Übung zur Multiplikation]
[http://www.zum.de/dwu/depothp/hp-math/hpmwu21.htm 1. Übung zur Multiplikation]


Zeile 54: Zeile 53:




=== Division ===
===Division===
[http://www.zum.de/dwu/depothp/hp-math/hpmwu35.htm Übung zur Division (leicht)]
[http://www.zum.de/dwu/depothp/hp-math/hpmwu35.htm Übung zur Division (leicht)]


==Teilweise Radizieren==
==Teilweise Radizieren==
Man kann teilweise Radizieren, wenn sich der Radikant so faktorisieren lässt, dass ein Faktor eine Quadratzahl ist. Andererseits lässt sich ein positiver Faktor vor der Quadratwurzel durch Quadrieren unter die Wurzel ziehen.
Man kann teilweise Radizieren, wenn sich der Radikand so faktorisieren lässt, dass ein Faktor eine Quadratzahl ist. Andererseits lässt sich ein positiver Faktor vor der Quadratwurzel durch Quadrieren unter die Wurzel ziehen.


=== Teilweise Radizieren ohne Variablen ===
===Teilweise Radizieren ohne Variablen===
[http://www.zum.de/dwu/depothp/hp-math/hpmwu02.htm 1. Übung]
[http://www.zum.de/dwu/depothp/hp-math/hpmwu02.htm 1. Übung]


Zeile 67: Zeile 66:
[http://www.realmath.de/Neues/Klasse9/reellezahlen/wurzel.html 3. Übung mit Auswertung]
[http://www.realmath.de/Neues/Klasse9/reellezahlen/wurzel.html 3. Übung mit Auswertung]


=== Teilweise Radizieren mit Variablen ===
===Teilweise Radizieren mit Variablen===
[http://www.zum.de/dwu/depothp/hp-math/hpmwu04.htm 3. Übung]
[http://www.zum.de/dwu/depothp/hp-math/hpmwu04.htm 3. Übung]


Zeile 73: Zeile 72:




{{Autoren|Petra Bader|RGW-Weigand}}


{{mitgewirkt|
* [[Benutzer:Petra Bader|Petra Bader]]
* [[Benutzer:RGW-Weigand|RGW-Weigand]]
}}




{{SORTIERUNG:{{SUBPAGENAME}}}}
{{SORTIERUNG:{{SUBPAGENAME}}}}
[[Kategorie:Potenzen und Wurzeln]]
[[Kategorie:Mathematik]]
[[Kategorie:ZUM2Edutags]]
[[Kategorie:Mathematik-digital]]
<metakeywords>ZUM2Edutags,ZUM-Wiki,Mathematik-digital,Rechnen mit Quadratwurzeln,Lernpfad,Mathematik,9. Klasse,Quadratwurzeln,Quadratwurzel,Wurzelrechnung</metakeywords>
[[Kategorie:Lernpfad]]
[[Kategorie:Sekundarstufe 1]]
[[Kategorie:Quadratwurzeln]]
[[Kategorie:Algebra]]

Aktuelle Version vom 15. Oktober 2024, 06:06 Uhr

Lernpfad

Übungslernpfad zum Wiederholen und Vertiefen des Rechnens mit Quadratwurzeln

  • Zeitbedarf:
  • Material: Arbeitsblatt
  • Hinweis: Konzeption für Intensivierungsstunden


Titel Wurzelrechnung.jpg


Vollständiges Radizieren

Die Quadratwurzel aus einer rationalen Zahl ist diejenige, nicht negative Zahl, deren Quadrat r ergibt. r heißt Radikand der Wurzel.

Bsp.:


Einfach Übung

Addition und Subtraktion

Summen und Differenzen von Quadratwurzeln lassen sich nur dann zusammenfassen, wenn die Radikanden gleich sind.

Bsp.:


1. Übung zur Addition und Subtraktion

2. Übung

3. Übung

Multiplikation und Division

Für das Produkt von Quadratwurzeln gilt: für

Für die Division von Quadratwurzeln gilt: für

Multiplikation

1. Übung zur Multiplikation

2. Übung

3. Übung

4. Übung


Division

Übung zur Division (leicht)

Teilweise Radizieren

Man kann teilweise Radizieren, wenn sich der Radikand so faktorisieren lässt, dass ein Faktor eine Quadratzahl ist. Andererseits lässt sich ein positiver Faktor vor der Quadratwurzel durch Quadrieren unter die Wurzel ziehen.

Teilweise Radizieren ohne Variablen

1. Übung

2. Übung

3. Übung mit Auswertung

Teilweise Radizieren mit Variablen

3. Übung

4. Übung