Kürzen von Brüchen: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Katja Heimlich
Keine Bearbeitungszusammenfassung
 
(148 dazwischenliegende Versionen von 14 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
[[Benutzer:Katja Heimlich/Lernpfad Erweitern|zurück zum Lernpfad Brüche erweitern]]
__NOTOC__
__NOTOC__
{{Lernpfad-M|<big>'''Brüche kürzen'''</big>
{{Box|1=Lernpfad Brüche kürzen|2=
[[Bild:Comic_Kürzen.gif|right ]]


''Teil 2 der Lernpfadgruppe: Brüche erweitern, kürzen und vergleichen.''


*'''Zeitbedarf:'''
Das ist ja viel übersichtlicher, wenn man im Zähler und im Nenner nicht so große Zahlen stehen hat,<br> das findest du doch auch, oder?!
*'''Material:''' Laufzettel
}}


{{Kurzinfo-1|M-digital}}


==Hinführung Kürzen ==
[[Datei:Logo Mathematik-digital 2011.png|200px|left|verweis=Mathematik-digital]]
|3=Lernpfad}}
{{Navigation verstecken|{{Vorlage:Brüche erweitern, kürzen und vergleichen}}}}


[[Bild:Comic_Kürzen.gif ]]






'''Das ist ja viel übersichtlicher, wenn man im Zähler und im Nenner nicht so große Zahlen stehen hat,<br> das findest du doch auch, oder?!'''<br>
==Station Los geht's, wir machen alles übersichtlicher!==
<div style="margin-left:2em">[https://files.zum.de/lernpfad_brueche/Lernpfad_extern/Kuerzen/Zimmer/zimmer.html In diesem Zimmer] liegt alles herum. Hilf mit, dann geht es schneller.
<br>
Nachdem du beim Zimmeraufräumen geholfen hast, kannst du dich mit deinen Freunden verabreden. <br>[https://files.zum.de/lernpfad_brueche/Lernpfad_extern/Kuerzen/Bonbon/Bonbon.html Sortiere doch schon mal die Süßigkeiten], damit jeder das bekommt, was ihm schmeckt.</div>




<colorize>Los geht's, wir machen alles übersichtlicher!</colorize>
Du hast gesehen, dass du aus einem Bruch, wie &nbsp;&nbsp;<math>\frac{6}{18}</math>&nbsp;&nbsp; durch sortieren


#In diesem [http://lernpfad.ln0.de/Zimmer%20aufr%e4umen/zimmeraufraeumen_2.html Zimmer] liegt alles herum. Hilf mit, dann geht es schneller.
oder aufräumen den Bruch &nbsp;&nbsp;<math>\frac{1}{3}</math>&nbsp;&nbsp; zaubern kannst.
#Nachdem du beim Zimmeraufräumen geholfen hast, kannst du dich mit deinen Freunden verabreden. <br>Sortiere doch schon mal die [http://lernpfad.ln0.de/Naschi/Naschi_verteilen_2.html Süßigkeiten], damit jeder das bekommt, was ihm schmeckt.
<br>
 
 
Du hast gesehen, dass du aus einem Bruch, wie &nbsp;&nbsp;<math>\frac{6}{18}</math>&nbsp;&nbsp; durch sortieren oder aufräumen den Bruch &nbsp;&nbsp;<math>\frac{1}{3}</math>&nbsp;&nbsp; zaubern kannst.


===Aber was steckt hier dahinter? ===
===Aber was steckt hier dahinter?===


Dazu schau dir die folgende Aufgabe an.
:Dazu schau dir die folgende Aufgabe an.


Welcher Bruchteil ist zu Beginn blau gefärbt? Welcher Bruchteil ist gefärbt, wenn du das Kästchen drückst?
:Welcher Bruchteil ist zu Beginn blau gefärbt? Welcher Bruchteil ist gefärbt, wenn du das Kästchen drückst?


<ggb_applet height="400" width="690" showMenuBar="false" showResetIcon="true" framePossible="false" enableRightClick="false" filename="Hokuspokus.ggb" />
<ggb_applet height="450" width="900" id="jbhbpmyh" />  


:Damit die Zahlen im Zähler und im Nenner nicht so groß sind, kannst du einzelne Unterteilungen entfernen, aber nicht alle.<br>
:Willst du versuchen, ob du unnötige Unterteilungen entfernen kannst?<br><br>
<div style="margin-left:2em"> [https://files.zum.de/lernpfad_brueche/Lernpfad_extern/Kuerzen/Strecken_entfernen/Strecken_entfernen.html Hier hast du die Möglichkeit, es herauszufinden.]</div>
<br>
<br>
Damit die Zahlen im Zähler und im Nenner nicht so groß sind, kannst du einzelne Unterteilungen entfernen, aber nicht alle.<br> Willst du versuchen, ob du unnötige Unterteilungen entfernen kannst? [http://lernpfad.ln0.de/Hokuspokus/hokuspokus.html Hier hast du die Möglichkeit, es herauszufinden.]
<br>
<br>


===Begriff Kürzen ===
==Station Einführung Kürzen==
<div style="border: 2px solid #ffd700; background-color:#ffffff; padding:7px;">
 
;[[Bild:Feststellung.gif|left]]
{{Box|1=Begriff KÜRZEN|2=
<br>
[[Bild:Feststellung.gif|left]]
Was du gerade gemacht und beobachtet hast, nennt sich '''Kürzen'''.
Was du gerade gemacht und beobachtet hast, nennt sich '''Kürzen'''.


Zeile 50: Zeile 49:
<br>
<br>


</div>
Wie du gesehen hast, ändert sich auch beim Kürzen der Bruchteil nicht.
<br>
 
|3=Kurzinfo}}


<br>
<br>
Kommt dir das bekannt vor? {{Lösung versteckt|Kürzen ist das Gegenteil von Erweitern, allerdings mit einigen Besonderheiten.<br>[[Bild:Bild_erweitern_kürzen.png]]}}
<div style="margin-left:2em">Kommt dir das bekannt vor?? {{Lösung versteckt|<br> Kürzen ist das Gegenteil von Erweitern, allerdings mit einigen Besonderheiten.<br><br>
<center>[[Bild:Bild_erweitern_kürzen.png]]</center>}}</div>
<br>
<br>
<br>
<br>
<colorize>Die Rechnung, die dahinter steckt</colorize>
<br>
<br>
Hier hast du ein Rechteck. Von dem Rechteck sind &nbsp; <math>\frac{12}{24}</math> &nbsp; blau gefärbt.


Der Bruchteil lässt sich kürzen, dazu musst du den Schieberegler verschieben.
===Die Rechnung, die dahinter steckt===
 
:Hier hast du ein Rechteck. Von dem Rechteck sind &nbsp; <math>\frac{12}{24}</math> &nbsp; blau gefärbt.
 
:Der Bruchteil lässt sich kürzen, dazu musst du den Schieberegler verschieben.


Bearbeite nun folgende Aufgaben und schreibe alles auf deinen Laufzettel, du wirst die Antworten noch brauchen.
:Bearbeite nun folgende Aufgaben und schreibe alles auf deinen Laufzettel, du wirst die Antworten noch brauchen.
<div style="margin-left:2em">
{|
{|
|[[Bild:Comic_Frage_klein.gif]]  
|[[Bild:Comic_Frage_klein.gif]]
|
|
# Welche Zahlen sind zum Kürzen eingestellt?  
#Welche Zahlen sind zum Kürzen eingestellt?
# Kürze nun mit '''2'''. Wie verändert sich der Zähler?
#Kürze nun mit '''2'''. Wie verändert sich der Zähler?
# Kürze als nächstes mit '''6'''. Wie verändert sich der Nenner?
#Kürze als nächstes mit '''6'''. Wie verändert sich der Nenner?
# Kürze zum Schluss mit '''4'''. Wie verändern sich Zähler und Nenner?
#Kürze zum Schluss mit '''4'''. Wie verändern sich Zähler und Nenner?
# Überlege dir, warum es die '''5''' nicht auf dem Schieberegler gibt.
#Überlege dir, warum es die '''5''' nicht auf dem Schieberegler gibt.
|}
|}
<ggb_applet height="450" width="900" id="znzvt9tc" />
===Quiz: Hast du alle Fragen richtig beantwortet?===
:Das waren ganz schön viele Fragen! Teste dich selbst, was und wieviel du richtig beantwortet hast.<br>
<div style="margin-left:2em"> [https://files.zum.de/lernpfad_brueche/Ubungen/Quiz/Test_kuerzen/Test_kuerzen.html Hier geht's lang.]<br></div>
<br>
<br>
<br>
<ggb_applet height="440" width="755" showMenuBar="false" showResetIcon="true" framePossible="false" enableRightClick="false" filename="Rechnung_kuerzen.ggb" />


<br>
==Station Kürzen==
Das waren ganz schön viele Fragen! Teste dich selbst, was und wieviel du richtig beantwortet hast.<br>
 
[http://lernpfad.ln0.de/Quiz/Rechnungstest_k/quiz_rechnungstest_k.html Hier geht's lang.]<br>
'''Schreibe dir den Merksatz in dein Heft:'''


==Kürzen ==
{{Box|1=Merke|2=
<div style="border: 2px solid red; background-color:#ffffff; padding:7px;">
[[Bild:Comic_Merke.gif|left]]  
{|
&nbsp; '''Ein Bruch wird gekürzt, indem man den Zähler und den Nenner durch die selbe Zahl dividiert.'''<br>&nbsp; Diese Zahl ist ein '''gemeinsamer Teiler''' von Zähler und Nenner.
|[[Bild:Comic_Merke.gif]]  
|&nbsp; '''Ein Bruch wird gekürzt, indem man den Zähler und den Nenner durch die selbe Zahl dividiert.'''<br>&nbsp; Diese Zahl ist ein '''gemeinsamer Teiler''' von Zähler und Nenner.
<br> &nbsp;  
<br> &nbsp;  
<br>
<br>
&nbsp; Beispiel: <math>\frac{12}{18}=\frac{12 : 6}{18 : 6}=\frac{2}{3}</math>
&nbsp; Beispiel: <math>\frac{12}{18}=\frac{12 : 6}{18 : 6}=\frac{2}{3}</math>
|}
|3=Merksatz}}
<br>
<br>
===Wie oft und mit welchen Zahlen kannst du einen Bruch kürzen?===
 
:Kreuze die Antwort an, von der du glaubst, sie sei richtig.
 
:Wenn du alle Fragen beantwortet hast, klicke auf die '''Korrektur'''-Taste.
 
 
<div style="margin-left:2em">Dass die Zahl, mit der du kürzen kannst, ein gemeinsamer Teiler von Zähler und Nenner sein muss,<br>
hast du schon festgestellt.
 
'''Wie viele gemeinsame Teiler von Zähler und Nenner findest du...'''
 
<div class="multiplechoice-quiz">
 
'''...für den Bruch &nbsp;<math>\frac{4}{8}</math>&nbsp;?''' (!zwei, nämlich 2 und 4)  (!einen, nämlich 4) (drei und zwar 1, 2 und 4)
 
'''...für den Bruch &nbsp;<math>\frac{1}{8}</math>&nbsp;?''' (!zwei, nämlich 2 und 4) (einen, nämlich 1) (!keinen)
 
'''Die 1 ist immer ein gemeinsamer Teiler von Zähler und Nenner, denn jede Zahl ist durch 1 teilbar.''' <br>'''Was machst du, wenn du keinen gemeinsamen Teiler außer 1 findest?''' (Ich kann zwar mit 1 kürzen, aber der Bruch ändert sich dadurch nicht.) (!Das passiert nicht. Man findet immer noch weitere gemeinsame Teiler!)
 
'''Kannst du mit 0 kürzen?''' (!Ja) (Nein)
 
</div>
</div>
</div>
<br>
<br>
<br>
<br>
<colorize> Wie oft und mit welchen Zahlen kannst du einen Bruch kürzen?</colorize>
 
:Das ist wichtig, bitte schreibe dir den folgenden Merksatz in dein Heft.
 
<div style="margin-left:2em">
<!--{{Lösung versteckt|1=Text zum Verstecken|2=Label fürs Anzeigen|3=Label fürs Verbergen}}-->
{{Lösung versteckt|1=
 
{{Box|1=Merke|2=
[[Bild:Comic_Merke.gif| left]]
<br>&nbsp;Kannst du außer 1 keinen gemeinsamen Teiler von Zähler und Nenner finden,<br>&nbsp; dann heißt der Bruch '''vollständig gekürzt'''.<br>&nbsp; Du kannst dann den Bruch nicht weiter vereinfachen oder übersichtlicher machen.<br>
<br><br>
Beispiel:
 
<math>\frac{4}{6}</math>&nbsp; kann noch mit '''2''' gekürzt werden: &nbsp; <math>\frac{4}{6}=\frac{4 : 2}{6 : 2}=\frac{2}{3}</math>&nbsp;.
 
<math>\frac{2}{3}</math> &nbsp; hat außer 1 keinen weiteren gemeinsamen Teiler für Zähler und Nenner und ist vollständig gekürzt.
|3=Merksatz}}
 
|2=Anzeigen|3=Verstecken}}</div>
<br>
<br>
Dass die Zahlen, mit denen du kürzen kannst, ein gemeinsamer Teile von Zähler und Nenner sein müssen,<br>
hast du schon festgestellt.
Überlege dir jetzt, durch wie viele Zahlen der Bruch &nbsp;&nbsp;<math>\frac{1}{3}</math>&nbsp;&nbsp; teilbar ist. <br>Schau dir dazu auch noch das Bild an und überlege, ob und welche Strecken unnötig sind.
<br>
<br>


===Wie kannst du einen Bruch vollständig kürzen?===


....
<div style="margin-left:2em">[https://files.zum.de/lernpfad_brueche/Lernpfad_extern/Kuerzen/Schrittweise_kuerzen/schrittweisekuerzen.html Finde es heraus!] </div>
<br><br>
{{Box|1=Vorgehensweise KÜRZEN|2=
[[Bild:Feststellung.gif|left]]
<br>
Um einen Bruch vollständig zu kürzen, kürzt du solange mit gemeinsamen Teilern <br> von Zähler und Nenner, bis du keinen außer 1 mehr findest.


{{versteckt|Text folgt}}
|3=Kurzinfo}}


[[Bild:Uhr-7.gif|left]]
<br><br>
===Die Zeit läuft ab jetzt...===
<div style="margin-left:2em">[[Bild:Uhr-7.gif|left]]


In einer Stegreifaufgabe oder in einer Schulaufgabe ist die Zeit knapp!
In einer Stegreifaufgabe oder in einer Schulaufgabe ist die Zeit knapp!
Zeile 111: Zeile 168:
Wenn du kürzen sollst, dann musst du dem Zähler und dem Nenner einen gemeinsamen Teiler ansehen.  
Wenn du kürzen sollst, dann musst du dem Zähler und dem Nenner einen gemeinsamen Teiler ansehen.  


Da bleibt keine Zeit z.B. den ggT auszurechnen.
Aber erinnerst du dich noch an die [[Teilbarkeitsregeln|Teilbarkeitsregeln]]?
 
Aber erinnerst du dich noch an die [[Benutzer:Katja Heimlich/Teilbarkeitsregeln| Teilbarkeitsregeln]]?


Sie können dir helfen einen gemeinsamen Teiler schneller zu sehen.
Sie können dir helfen einen gemeinsamen Teiler schneller zu sehen.


<br>
Jetzt solltest du fit sein und gemeinsame Teiler auch in kurzer Zeit finden können.
<br>
<br>
</div>
<br><br>
<br><br>


==Übungen zum Kürzen ==
==Übungen zum Thema "Brüche kürzen"==
 
Es gibt mehrere Aufgaben und Schwierigkeiten zur Auswahl. Wir empfehlen dir: Wähle zwei Übungen aus jeder Schwierigkeitsstufe, die du bearbeitest.
<br /><br /><br />
 
<div class="grid" style="margin-left:20px"><div class="width-1-3" style="text-align:center; padding:0px 0px 30px 0px;"><div style="background:#8FCD25;line-height:75%;"><br />'''LEICHT'''<br /><br /></div>
 
[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_kuerzen/kuerzeMit/kuerzeMit.html Kürze den Bruch]
 
[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_kuerzen/kuerzZahl/findediezahl-kuerzen.html Mit welcher Zahl wurde gekürzt?]
</div><div class="width-1-3" style="text-align:center; padding:0px 0px 30px 0px;"><div style="background:#DD7F28;line-height:75%;"><br />'''MITTELSCHWER'''<br /><br /></div>
 
[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_kuerzen/kuerzeMit/kuerzeMit_mittel.html Kürze den Bruch]
 
[https://files.zum.de/lernpfad_brueche/Ubungen/Quiz/mit%20welcher%20zahl%20gekuerzt/quiz_bildgekuerzt_leicht.html Mit welcher Zahl wurde gekürzt?]


===Kürze! ===
[https://files.zum.de/lernpfad_brueche/Ubungen/Quiz/rof_k/quiz_rof_k.html Wurde richtig gekürzt?]
[http://lernpfad.ln0.de/%dcbungen%20zum%20K%fcrzen/kuerzeMit/kuerzeMit.html Kürze die Brüche].


===Mit welcher Zahl wurde gekürzt? ===
[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_kuerzen/vollstaendig%20kuerzen/kuerzevollst.html Kürze vollständig]
</div><div class="width-1-3" style="text-align:center; padding:0px 0px 30px 0px;"><div style="background:#C64285;line-height:75%;"><br />'''SCHWER'''<br /><br /></div>


[http://lernpfad.ln0.de/%dcbungen%20zum%20K%fcrzen/kuerzZahl/findediezahl-kuerzen.html Findest du die Zahl, mit der gekürzt wurde?]
[https://files.zum.de/lernpfad_brueche/Ubungen/Quiz/mit%20welcher%20zahl%20gekuerzt/quiz_bildgekuerzt.html Mit welcher Zahl wurde gekürzt?]


===Richtig oder falsch gekürzt? ===
[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_kuerzen/vollstaendig%20kuerzen/kuerzevollst-schwer.html Kürze vollständig]
[http://lernpfad.ln0.de/Quiz/rof_k/quiz_rof_k.html Findest du den Fehler?]
</div></div>


===Kürze soweit wie möglich ===
[http://www.lernpfad.ln0.de/%dcbungen%20zum%20K%fcrzen/vollst%e4ndig%20k%fcrzen/kuerzevollst.html Schaffst du es?] Trau' dich!


===Lösungswort ===
{{Fortsetzung|weiter=Brüche vergleichen|weiterlink=Größenvergleich von Brüchen}}
...


<div align="right">[[Benutzer:Katja Heimlich/Lernpfad Größenvergleich von Brüchen|weiter zum Lernpfad Brüche vergleichen]]</div>
[[Kategorie:Mathematik]]
[[Kategorie:Mathematik-digital]]
[[Kategorie:Sekundarstufe 1]]
[[Kategorie:Lernpfad]]
[[Kategorie:Interaktive Übung]]
[[Kategorie:Algebra]]

Aktuelle Version vom 24. April 2022, 10:29 Uhr

Lernpfad Brüche kürzen
Comic Kürzen.gif


Das ist ja viel übersichtlicher, wenn man im Zähler und im Nenner nicht so große Zahlen stehen hat,
das findest du doch auch, oder?!


Logo Mathematik-digital 2011.png



Station Los geht's, wir machen alles übersichtlicher!

In diesem Zimmer liegt alles herum. Hilf mit, dann geht es schneller.


Nachdem du beim Zimmeraufräumen geholfen hast, kannst du dich mit deinen Freunden verabreden.
Sortiere doch schon mal die Süßigkeiten, damit jeder das bekommt, was ihm schmeckt.


Du hast gesehen, dass du aus einem Bruch, wie      durch sortieren

oder aufräumen den Bruch      zaubern kannst.

Aber was steckt hier dahinter?

Dazu schau dir die folgende Aufgabe an.
Welcher Bruchteil ist zu Beginn blau gefärbt? Welcher Bruchteil ist gefärbt, wenn du das Kästchen drückst?
GeoGebra
Damit die Zahlen im Zähler und im Nenner nicht so groß sind, kannst du einzelne Unterteilungen entfernen, aber nicht alle.
Willst du versuchen, ob du unnötige Unterteilungen entfernen kannst?



Station Einführung Kürzen

Begriff KÜRZEN
Feststellung.gif

Was du gerade gemacht und beobachtet hast, nennt sich Kürzen.

Beim Kürzen eines Bruches vergröberst du die gezeigten Bruchteile, indem du die unnötigen Unterteilungen entfernst.

Wie du gesehen hast, ändert sich auch beim Kürzen der Bruchteil nicht.



Kommt dir das bekannt vor??


Kürzen ist das Gegenteil von Erweitern, allerdings mit einigen Besonderheiten.

Bild erweitern kürzen.png



Die Rechnung, die dahinter steckt

Hier hast du ein Rechteck. Von dem Rechteck sind     blau gefärbt.
Der Bruchteil lässt sich kürzen, dazu musst du den Schieberegler verschieben.
Bearbeite nun folgende Aufgaben und schreibe alles auf deinen Laufzettel, du wirst die Antworten noch brauchen.
Comic Frage klein.gif
  1. Welche Zahlen sind zum Kürzen eingestellt?
  2. Kürze nun mit 2. Wie verändert sich der Zähler?
  3. Kürze als nächstes mit 6. Wie verändert sich der Nenner?
  4. Kürze zum Schluss mit 4. Wie verändern sich Zähler und Nenner?
  5. Überlege dir, warum es die 5 nicht auf dem Schieberegler gibt.
GeoGebra


Quiz: Hast du alle Fragen richtig beantwortet?

Das waren ganz schön viele Fragen! Teste dich selbst, was und wieviel du richtig beantwortet hast.



Station Kürzen

Schreibe dir den Merksatz in dein Heft:

Merke
Comic Merke.gif

  Ein Bruch wird gekürzt, indem man den Zähler und den Nenner durch die selbe Zahl dividiert.
  Diese Zahl ist ein gemeinsamer Teiler von Zähler und Nenner.
 

  Beispiel:



Wie oft und mit welchen Zahlen kannst du einen Bruch kürzen?

Kreuze die Antwort an, von der du glaubst, sie sei richtig.
Wenn du alle Fragen beantwortet hast, klicke auf die Korrektur-Taste.


Dass die Zahl, mit der du kürzen kannst, ein gemeinsamer Teiler von Zähler und Nenner sein muss,

hast du schon festgestellt.

Wie viele gemeinsame Teiler von Zähler und Nenner findest du...

...für den Bruch   ? (!zwei, nämlich 2 und 4) (!einen, nämlich 4) (drei und zwar 1, 2 und 4)

...für den Bruch   ? (!zwei, nämlich 2 und 4) (einen, nämlich 1) (!keinen)

Die 1 ist immer ein gemeinsamer Teiler von Zähler und Nenner, denn jede Zahl ist durch 1 teilbar.
Was machst du, wenn du keinen gemeinsamen Teiler außer 1 findest? (Ich kann zwar mit 1 kürzen, aber der Bruch ändert sich dadurch nicht.) (!Das passiert nicht. Man findet immer noch weitere gemeinsame Teiler!)

Kannst du mit 0 kürzen? (!Ja) (Nein)



Das ist wichtig, bitte schreibe dir den folgenden Merksatz in dein Heft.
Merke
Comic Merke.gif


 Kannst du außer 1 keinen gemeinsamen Teiler von Zähler und Nenner finden,
  dann heißt der Bruch vollständig gekürzt.
  Du kannst dann den Bruch nicht weiter vereinfachen oder übersichtlicher machen.


Beispiel:

  kann noch mit 2 gekürzt werden:    .

  hat außer 1 keinen weiteren gemeinsamen Teiler für Zähler und Nenner und ist vollständig gekürzt.



Wie kannst du einen Bruch vollständig kürzen?



Vorgehensweise KÜRZEN
Feststellung.gif


Um einen Bruch vollständig zu kürzen, kürzt du solange mit gemeinsamen Teilern
von Zähler und Nenner, bis du keinen außer 1 mehr findest.



Die Zeit läuft ab jetzt...

Uhr-7.gif

In einer Stegreifaufgabe oder in einer Schulaufgabe ist die Zeit knapp!

Wenn du kürzen sollst, dann musst du dem Zähler und dem Nenner einen gemeinsamen Teiler ansehen.

Aber erinnerst du dich noch an die Teilbarkeitsregeln?

Sie können dir helfen einen gemeinsamen Teiler schneller zu sehen.


Jetzt solltest du fit sein und gemeinsame Teiler auch in kurzer Zeit finden können.



Übungen zum Thema "Brüche kürzen"

Es gibt mehrere Aufgaben und Schwierigkeiten zur Auswahl. Wir empfehlen dir: Wähle zwei Übungen aus jeder Schwierigkeitsstufe, die du bearbeitest.