Erweitern von Brüchen: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
 
(7 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 13: Zeile 13:




==Station Wiederholung ==
==Station Wiederholung==


:Bearbeite alle drei Wiederholungsübungen von links nach rechts.
:Bearbeite alle drei Wiederholungsübungen von links nach rechts.
Zeile 30: Zeile 30:
<br><br>
<br><br>


==Station Einführung Erweitern ==
==Station Einführung Erweitern==
'''Suchbild'''
'''Suchbild'''
:Starte das Suchbild und schreibe dir alle vier Unterschiede, die es gibt, auf deinen Laufzettel.
:Starte das Suchbild und schreibe dir alle vier Unterschiede, die es gibt, auf deinen Laufzettel.


Zeile 41: Zeile 42:
<br>
<br>


==Station Zusammenhang zwischen bestimmten Brüchen ==
==Station Zusammenhang zwischen bestimmten Brüchen==


:Also wirklich, über den Unterschied &nbsp;&nbsp;<math>\frac{1}{2}</math>&nbsp;&nbsp; und &nbsp;&nbsp;<math>\frac{11}{22}</math>&nbsp; scheint sich auch Frau Fragezeichen zu wundern...<br>
:Also wirklich, über den Unterschied &nbsp;&nbsp;<math>\frac{1}{2}</math>&nbsp;&nbsp; und &nbsp;&nbsp;<math>\frac{11}{22}</math>&nbsp; scheint sich auch Frau Fragezeichen zu wundern...<br>
Zeile 57: Zeile 58:
#'''Finde mit Hilfe der Rechtecke heraus, was &nbsp;&nbsp;<math>\frac{1}{2}</math>&nbsp;&nbsp; und &nbsp;&nbsp;<math>\frac{11}{22}</math>&nbsp;&nbsp; gemeinsam haben und schreibe es dir auf deinen Laufzettel.'''
#'''Finde mit Hilfe der Rechtecke heraus, was &nbsp;&nbsp;<math>\frac{1}{2}</math>&nbsp;&nbsp; und &nbsp;&nbsp;<math>\frac{11}{22}</math>&nbsp;&nbsp; gemeinsam haben und schreibe es dir auf deinen Laufzettel.'''
#'''Stelle links den Bruch &nbsp;&nbsp;<math>\frac{1}{4}</math>&nbsp;&nbsp; ein und versuche rechts einen weiteren Bruch einzustellen, <br>der den gleichen Bruchteil wie &nbsp;&nbsp;<math>\frac{1}{4}</math>&nbsp;&nbsp; anzeigt. Schreibe dir auch diese Brüche auf deinen Laufzettel.'''
#'''Stelle links den Bruch &nbsp;&nbsp;<math>\frac{1}{4}</math>&nbsp;&nbsp; ein und versuche rechts einen weiteren Bruch einzustellen, <br>der den gleichen Bruchteil wie &nbsp;&nbsp;<math>\frac{1}{4}</math>&nbsp;&nbsp; anzeigt. Schreibe dir auch diese Brüche auf deinen Laufzettel.'''
<br>
<br>
<ggb_applet height="500" width="800" id="vztvat2r" />
<ggb_applet height="500" width="800" id="vztvat2r" />
Zeile 73: Zeile 75:
<br>
<br>


==Station Erweitern ==
==Station Erweitern==
'''Pizza essen gehen'''
'''Pizza essen gehen'''


Zeile 80: Zeile 82:


::[[Bild:Pizzaessen.png]]
::[[Bild:Pizzaessen.png]]
<br>
<br>


Zeile 105: Zeile 108:
:Bearbeite nun folgende Aufgaben und schreibe alles auf deinen Laufzettel, deine Antworten wirst du für ein Quiz noch brauchen.<br>
:Bearbeite nun folgende Aufgaben und schreibe alles auf deinen Laufzettel, deine Antworten wirst du für ein Quiz noch brauchen.<br>
:{|
:{|
|[[Bild:Comic_Frage_klein.gif]]  
|[[Bild:Comic_Frage_klein.gif]]
|
|
# Stelle den Bruch <small>&nbsp;&nbsp;<math>\frac{1}{4}</math> &nbsp;&nbsp;</small> ein und erweitere mit '''4'''.  
#Stelle den Bruch <small>&nbsp;&nbsp;<math>\frac{1}{4}</math> &nbsp;&nbsp;</small> ein und erweitere mit '''4'''.  
#* Wie verändert sich dabei der rechte Kreis?
#*Wie verändert sich dabei der rechte Kreis?
#* Wie verändern sich die Brüche unter den Kreisen?
#*Wie verändern sich die Brüche unter den Kreisen?
# Stelle nun einen Bruch ein und erweitere ihn so, dass der Zähler und der Nenner rechts dreimal so groß sind wie links.  
#Stelle nun einen Bruch ein und erweitere ihn so, dass der Zähler und der Nenner rechts dreimal so groß sind wie links.  
#* Mit welcher Zahl musst du erweitern?
#*Mit welcher Zahl musst du erweitern?
# Stelle den Bruch &nbsp;&nbsp;<math>\frac{1}{2}</math> &nbsp;&nbsp; ein. Erweitere mit '''5'''.  
#Stelle den Bruch &nbsp;&nbsp;<math>\frac{1}{2}</math> &nbsp;&nbsp; ein. Erweitere mit '''5'''.  
#* Vergleiche auf beiden Seiten die Zähler und die Nenner. Wie haben sie sich beim Erweitern mit '''5''' verändert?
#*Vergleiche auf beiden Seiten die Zähler und die Nenner. Wie haben sie sich beim Erweitern mit '''5''' verändert?
|}
|}
<br>
<br>


Zeile 121: Zeile 125:


'''Quiz: Hast du alle Fragen richtig beantwortet? '''
'''Quiz: Hast du alle Fragen richtig beantwortet? '''
:Hast du auch versucht alle Fragen zu beantworten? <br>
:Hast du auch versucht alle Fragen zu beantworten? <br>


Zeile 139: Zeile 144:
<br>
<br>


==Station Besonderheiten beim Erweitern ==
==Station Besonderheiten beim Erweitern==
'''Warum sich der Wert beim Erweitern nicht ändert -    Schokolade oder keine Schokolade, das ist hier die Frage'''  
'''Warum sich der Wert beim Erweitern nicht ändert -    Schokolade oder keine Schokolade, das ist hier die Frage'''  




[[Bild:Schokolade.png|right]]  
[[Bild:Schokolade.png|right]]  
:Frau Fragezeichen hat immer ganz viele Fragen, die sie alleine nicht beantworten kann.  
 
:Deshalb kommen regelmäßig Stefan, Marie und Tobi und helfen Frau Fragezeichen dabei.  
:Frau Fragezeichen hat immer ganz viele Fragen, die sie alleine nicht beantworten kann.
:Deshalb kommen regelmäßig Stefan, Marie und Tobi und helfen Frau Fragezeichen dabei.
:Jeder bekommt dann immer eine leckere Tafel Schokolade.
:Jeder bekommt dann immer eine leckere Tafel Schokolade.
:Auch heute ist es wieder so weit, doch diesmal haben Stefan, Marie und Tobi noch einige Freunde mitgebracht:
:Auch heute ist es wieder so weit, doch diesmal haben Stefan, Marie und Tobi noch einige Freunde mitgebracht:
Zeile 153: Zeile 159:


::[[Bild: Tafelnaufteilen.png]]
::[[Bild: Tafelnaufteilen.png]]
<br>
<br>
<div style="margin-left:2em">[https://files.zum.de/lernpfad_brueche/Lernpfad_extern/Erweitern/Schokolade/schokolade.html Hilf mit], dann ist die erste Frage schon geschafft.</div>
<div style="margin-left:2em">[https://files.zum.de/lernpfad_brueche/Lernpfad_extern/Erweitern/Schokolade/schokolade.html Hilf mit], dann ist die erste Frage schon geschafft.</div>
Zeile 167: Zeile 174:


:[[Bild:ComicNull.png]]
:[[Bild:ComicNull.png]]
<br>
<br>
<br>
<br>
:Was ist wohl <span style="color:red">N N N</span> ? Finde es heraus!
:Was ist wohl <span style="color:red">N N N</span> ? Finde es heraus!


Zeile 192: Zeile 201:


Es gibt mehrere Aufgaben und Schwierigkeiten zur Auswahl. Wir empfehlen dir: Wähle zwei Übungen aus jeder Schwierigkeitsstufe, die du bearbeitest.
Es gibt mehrere Aufgaben und Schwierigkeiten zur Auswahl. Wir empfehlen dir: Wähle zwei Übungen aus jeder Schwierigkeitsstufe, die du bearbeitest.
<br /><br /><br />


<div class="grid" style="margin-left:20px"><div class="width-1-3" style="background:D4F69C; text-align:center; padding:0px 0px 30px 0px; border-color:#8FCD25; border-width:3px; border-style:solid"><div style="background:#8FCD25">'''LEICHT'''<br/><br/></div>
<div class="grid" style="margin-left:20px"><div class="width-1-3" style="text-align:center; padding:0px 0px 30px 0px;"><div style="background:#8FCD25;line-height:75%;"><br />'''LEICHT'''<br /><br /></div>


[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_Erweitern/Erweitere%20mit/erweiteremit_leicht.html Erweitere den Bruch]
[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_Erweitern/Erweitere%20mit/erweiteremit_leicht.html Erweitere den Bruch]


[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_Erweitern/Finde%20die%20Erweiterungszahl/findediezahl.html Mit welcher Zahl wurde erweitert?]
[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_Erweitern/Finde%20die%20Erweiterungszahl/findediezahl.html Mit welcher Zahl wurde erweitert?]
</div><div class="width-1-3" style="background:#FFCEA2; text-align:center; padding:0px 0px 30px 0px; border-color:#8FCD25; border-width:4px;"><div style="background:#DD7F28;">'''MITTELSCHWER'''<br/><br/></div>
</div><div class="width-1-3" style="text-align:center; padding:0px 0px 30px 0px;"><div style="background:#DD7F28;line-height:75%;"><br />'''MITTELSCHWER'''<br /><br /></div>


[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_Erweitern/Erweitere%20mit/erweiteremit_mittel.html Erweitere den Bruch]
[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_Erweitern/Erweitere%20mit/erweiteremit_mittel.html Erweitere den Bruch]
Zeile 207: Zeile 217:


[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_Erweitern/Erweitere%20auf%20gleichen%20Nenner/ErwaufNenner.html Erweitere auf einen gemeinsamen Nenner]
[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_Erweitern/Erweitere%20auf%20gleichen%20Nenner/ErwaufNenner.html Erweitere auf einen gemeinsamen Nenner]
</div><div class="width-1-3" style="text-align:center; padding:00px 0px 30px 0px;"><div style="background:#C64285;">'''SCHWER'''<br/><br/></div>
</div><div class="width-1-3" style="text-align:center; padding:0px 0px 30px 0px;"><div style="background:#C64285;line-height:75%;"><br />'''SCHWER'''<br /><br /></div>


[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_Erweitern/Erweitere%20mit/erweiteremit_leicht.html Erweitere den Bruch]
[https://files.zum.de/lernpfad_brueche/Ubungen/Ubungen_Erweitern/Erweitere%20mit/erweiteremit_leicht.html Erweitere den Bruch]
Zeile 224: Zeile 234:
[[Kategorie:Sekundarstufe 1]]
[[Kategorie:Sekundarstufe 1]]
[[Kategorie:Lernpfad]]
[[Kategorie:Lernpfad]]
[[Kategorie:Bruchrechnung]]
<metakeywords>ZUM2Edutags,ZUM-Wiki,Erweitern von Brüchen,Mathematik-digital, Lernpfad, Bruch, Brüche, Bruchrechnung, Erweitern, interaktive Übungen, Mathematik, 6. Klasse</metakeywords>
[[Kategorie:ZUM2Edutags]]
[[Kategorie:Interaktive Übung]]
[[Kategorie:Interaktive Übung]]
[[Kategorie:GeoGebra]]
[[Kategorie:Algebra]]

Aktuelle Version vom 24. April 2022, 10:13 Uhr

Lernpfad Brüche erweitern
Comic Frage.gif
Logo Mathematik-digital 2011.png


Comic bruch.gif

Weißt du denn, was ein Bruch ist?

Auf geht's, eine kleine Wiederholung kann niemandem schaden!


Station Wiederholung

Bearbeite alle drei Wiederholungsübungen von links nach rechts.
1. Was gehört alles zu einem Bruch?
2. Welcher Bruchteil ist blau gefärbt?
3. Male die Bruchteile an!



Station Einführung Erweitern

Suchbild

Starte das Suchbild und schreibe dir alle vier Unterschiede, die es gibt, auf deinen Laufzettel.
Zahlenstrahl.png




Station Zusammenhang zwischen bestimmten Brüchen

Also wirklich, über den Unterschied      und     scheint sich auch Frau Fragezeichen zu wundern...
Comic Frage.gif


Lasst uns der Vermutung auf die Spur gehen!

Hier hast du zwei Rechtecke, die sich übereinander schieben lassen.
Du kannst beide Rechtecke so einstellen, dass ein bestimmter Bruchteil angezeigt wird.
Verstelle zuerst den Nenner und dann den Zähler.
  1. Finde mit Hilfe der Rechtecke heraus, was      und      gemeinsam haben und schreibe es dir auf deinen Laufzettel.
  2. Stelle links den Bruch      ein und versuche rechts einen weiteren Bruch einzustellen,
    der den gleichen Bruchteil wie      anzeigt. Schreibe dir auch diese Brüche auf deinen Laufzettel.


GeoGebra



Jetzt hast du bestimmt noch einen Bruch gefunden, der den gleichen Bruchteil wie      anzeigt, aber es gibt noch ganz viele andere!

Gleicher Bruchteil
Feststellung.gif

Anscheinend sehen einige Brüche unterschiedlich aus, doch man kann den gleichen Bruchteil durch verschiedene Brüche angeben. Deshalb ist      =     , weil sie den gleichen Bruchteil angeben.



Station Erweitern

Pizza essen gehen

Frau Fragezeichen bestellt eine Spinatpizza, Herr Ausrufezeichen eine Thunfischpizza und du eine Salamipizza.
Jeder schneidet seine Pizza zunächst in unterschiedlich viele, aber gleich große Stücke.
Pizzaessen.png


Jetzt habt ihr euch überlegt, dass ihr die Pizzen unter euch aufteilen wollt.
Herr Ausrufezeichen schlägt vor, die drei Pizzen gerecht aufzuteilen, sodass jeder den gleichen Anteil von jeder Pizza bekommt.


Erweitern
Feststellung.gif


Was du gerade in der Pizza-Aufgabe gemacht hast, nennt sich Erweitern.

Beim Erweitern eines Bruches verfeinerst du die gezeigten Bruchteile, indem du sie weiter unterteilst.




Die Rechnung, die dahinter steckt

Hier hast du zwei Kreise. Bei dem linken Kreis kannst du einen Bruch einstellen, der sich automatisch auch beim rechten Kreis einstellt.
Verschiebe wieder zuerst den Nenner und dann den Zähler.
Die Bruchteile des Kreises auf der rechten Seite lassen sich erweitern.
Bearbeite nun folgende Aufgaben und schreibe alles auf deinen Laufzettel, deine Antworten wirst du für ein Quiz noch brauchen.
Comic Frage klein.gif
  1. Stelle den Bruch       ein und erweitere mit 4.
    • Wie verändert sich dabei der rechte Kreis?
    • Wie verändern sich die Brüche unter den Kreisen?
  2. Stelle nun einen Bruch ein und erweitere ihn so, dass der Zähler und der Nenner rechts dreimal so groß sind wie links.
    • Mit welcher Zahl musst du erweitern?
  3. Stelle den Bruch       ein. Erweitere mit 5.
    • Vergleiche auf beiden Seiten die Zähler und die Nenner. Wie haben sie sich beim Erweitern mit 5 verändert?


GeoGebra


Quiz: Hast du alle Fragen richtig beantwortet?

Hast du auch versucht alle Fragen zu beantworten?
Teste dich und überprüfe deine Antworten.


Schreibe dir den Merksatz in dein Heft:

Merke
Comic Merke.gif

  Ein Bruch wird erweitert, indem man den Zähler und den Nenner mit der selben Zahl multipliziert.

  Beispiel:



Station Besonderheiten beim Erweitern

Warum sich der Wert beim Erweitern nicht ändert - Schokolade oder keine Schokolade, das ist hier die Frage


Schokolade.png
Frau Fragezeichen hat immer ganz viele Fragen, die sie alleine nicht beantworten kann.
Deshalb kommen regelmäßig Stefan, Marie und Tobi und helfen Frau Fragezeichen dabei.
Jeder bekommt dann immer eine leckere Tafel Schokolade.
Auch heute ist es wieder so weit, doch diesmal haben Stefan, Marie und Tobi noch einige Freunde mitgebracht:
Nele, Johannes, Benni, Sabine, Moni und dich.
Frau Fragezeichen freut sich riesig über so viel Besuch, doch sie hat nur drei Tafeln Schokolade.
Da fällt ihr auch schon die erste Frage ein...
Tafelnaufteilen.png


Hilf mit, dann ist die erste Frage schon geschafft.



Feststellung
Feststellung.gif

Egal mit welcher Zahl du die Schokoladenstücke erweitert hast, du und deine Freunde,
ihr habt zum Schluss immer gleich viel Schokolade bekommen.




Mit welchen Zahlen darfst du erweitern?

ComicNull.png



Was ist wohl N N N ? Finde es heraus!
Feststellung.gif

Wenn du einen Bruch, z.B.       mit 0 erweitern willst, dann musst du den Zähler
und den Nenner mit 0 multiplizieren. Für den Zähler ist das auch nicht schlimm,
aber für den Nenner! Denn der Nenner darf niemals Null sein!!!


Warum?
  ist nichts anderes als 1:6.
Und wenn du jetzt im Nenner 0 hättest, dann würdest du durch 0 teilen und das soll man nicht!

N N N heißt nicht anderes als der Nenner darf Niemals Null sein!

Schreibe dir den Merksatz in dein Heft:

Merke
Comic Merke.gif

Du kannst Brüche immer Erweitern, ohne dass sich der Wert ändert.

Der Nenner darf Niemals Null sein!



Übungen zum Thema "Brüche erweitern"

Es gibt mehrere Aufgaben und Schwierigkeiten zur Auswahl. Wir empfehlen dir: Wähle zwei Übungen aus jeder Schwierigkeitsstufe, die du bearbeitest.