Bruchteil, Anteil und Ganzes bei der Bruchrechnung: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung |
||
(6 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt) | |||
Zeile 3: | Zeile 3: | ||
[[Kategorie:Lernpfad]] | [[Kategorie:Lernpfad]] | ||
[[Kategorie:Sekundarstufe 1]] | [[Kategorie:Sekundarstufe 1]] | ||
{{Box|1=Lernpfad|2= | {{Box|1=Lernpfad|2= | ||
Herzlich Willkommen in dem Lernpfad "Bruchteil, Anteil und Ganzes bei der Bruchrechnung"!<br><br> | Herzlich Willkommen in dem Lernpfad "Bruchteil, Anteil und Ganzes bei der Bruchrechnung"!<br><br> | ||
Zeile 91: | Zeile 90: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Ganze: [[Datei:Rechteck Ganze 6.png|275px]] <math> \qquad \qquad </math> Bruchteil: [[Datei:Rechteck Bruchteil 5.png|250px]] <math> \qquad \qquad </math> Anteil: <math>\quad</math><math> \frac{5}{6} </math> | Ganze: [[Datei:Rechteck Ganze 6 neu.png|275px]] <math> \qquad \qquad </math> Bruchteil: [[Datei:Rechteck Bruchteil 5 neu.png|250px]] <math> \qquad \qquad </math> Anteil: <math>\quad</math><math> \frac{5}{6} </math> | ||
|2=Lösung: Aufgabe 2|3=Verstecken}} | |2=Lösung: Aufgabe 2|3=Verstecken}} | ||
Zeile 129: | Zeile 128: | ||
{{Box|1=2. Erkunde einige Zusammenhänge selbstständig|2= | {{Box|1=2. Erkunde einige Zusammenhänge selbstständig|2= | ||
Ziel dieser Aufgabe ist es, deine Entdeckungen in Geogebra in Merksätze zu formulieren. | |||
Gehe bei der nun folgenden Übung wie folgt vor: | Gehe bei der nun folgenden Übung wie folgt vor: | ||
1. Schaue dir die angefangenen Sätze | 1. Schaue dir die angefangenen Sätze unter den Aufgabenstellungen an.<br> | ||
2. Stelle Vermutungen auf, wie sich Bruchteil (blau gefärbtes Rechteck), Anteil oder Ganzes (schwarz umrandetes Rechteck) in den jeweiligen Situationen verändern und schreibe deine Vermutungen auf einem Blatt Papier auf.<br> | 2. Stelle Vermutungen auf, wie sich Bruchteil (blau gefärbtes Rechteck), Anteil oder Ganzes (schwarz umrandetes Rechteck) in den jeweiligen Situationen verändern und schreibe deine Vermutungen auf einem Blatt Papier auf.<br> | ||
3. Untersuche nun die Veränderungen in den Geogebra Applets. Klicke dafür einfach auf diese und verändere mithilfe der Schieberegler die jeweils zugehörige Größe. In den Geogebra Applets ist das Ganze ist immer das schwarz umrandete Rechteck und der Bruchteil immer der blau gefärbte Teil des Rechtecks.<br> | 3. Scrolle nun weiter nach unten. Dort findest du vier Geogebra Applets. Untersuche nun die Veränderungen in den Geogebra Applets. Klicke dafür einfach auf diese und verändere mithilfe der Schieberegler die jeweils zugehörige Größe. In den Geogebra Applets ist das Ganze ist immer das schwarz umrandete Rechteck und der Bruchteil immer der blau gefärbte Teil des Rechtecks.<br> | ||
4. Vervollständige nun die Sätze | 4. Vervollständige nun die angefangenen Sätze unter den Aufgabenstellungen und vergleiche sie mit deinen vorher aufgeschriebenen Vermutungen.<br> | ||
5. Überprüfe nun die vervollständigten Sätze. Schaue dir noch einmal die Geogebra Applets genau an, falls die Sätze nicht richtig sind.<br> | 5. Überprüfe nun die vervollständigten Sätze. Schaue dir noch einmal die Geogebra Applets genau an, falls die Sätze nicht richtig sind.<br> | ||
{{LearningApp|app=pdd77dvsk19|width=100%|height=400px}} | |||
<ggb_applet id="twujyngd" width="100%" height="200" /> | <ggb_applet id="twujyngd" width="100%" height="200" /> | ||
Zeile 143: | Zeile 146: | ||
<ggb_applet id="u8dhqzg7" width="100%" height="200" /> | <ggb_applet id="u8dhqzg7" width="100%" height="200" /> | ||
|3=Arbeitsmethode}} | |3=Arbeitsmethode}} | ||
Zeile 193: | Zeile 193: | ||
Anteil= '''<math>\frac{2}{3}</math>''' Ganze = '''24''' <math> \qquad </math> | Anteil= '''<math>\frac{2}{3}</math>''' Ganze = '''24''' <math> \qquad </math> | ||
Bruchteil | Bruchteil = '''<math>\frac{2}{3} </math>''' <math>\cdot </math>'''24''' <math> \quad \overset{\text{kürzen}}{\underset{\text{mit 3}}{=}} </math> '''<math> \frac{2}{1} </math>''' <math> \cdot </math> '''8''' = '''16'''. | ||
Antwort: Kim hat für ihre Geburtstagsfeier 16 Schokoladenriegel mit Nüssen gekauft. | Antwort: Kim hat für ihre Geburtstagsfeier 16 Schokoladenriegel mit Nüssen gekauft. | ||
Zeile 207: | Zeile 207: | ||
Anteil= <math>\frac{2}{3}</math> Ganze = 24 <math> \qquad </math> | Anteil= <math>\frac{2}{3}</math> Ganze = 24 <math> \qquad </math> | ||
Bruchteil | Bruchteil = <math>\frac{2}{3} </math> <math>\cdot </math>24 <math> \quad \overset{\text{kürzen}}{\underset{\text{mit 3}}{=}} </math> <math> \frac{2}{1} </math> <math> \cdot </math> 8 = 16. | ||
Antwort: Kim hat für ihre Geburtstagsfeier 16 Schokoladenriegel mit Nüssen gekauft. | Antwort: Kim hat für ihre Geburtstagsfeier 16 Schokoladenriegel mit Nüssen gekauft. | ||
Zeile 361: | Zeile 361: | ||
<div class="lueckentext-quiz" width="200" height="160"> | <div class="lueckentext-quiz" width="200" height="160"> | ||
Das Ganze lässt sich mithilfe der allgemeinen Berechnungsweise '''Ganze''' = '''Bruchteil''' <math> : </math>'''Anteil''' berechnen. | Das Ganze lässt sich mithilfe der allgemeinen Berechnungsweise '''Ganze''' = '''Bruchteil''' <math> : </math>'''Anteil''' = '''Bruchteil''' <math> \cdot </math> '''Kehrbruch des Anteils''' berechnen. | ||
Wir üben nun gemeinsam die Berechnung des Ganzen in einem gegebenen Sachzusammenhang: | Wir üben nun gemeinsam die Berechnung des Ganzen in einem gegebenen Sachzusammenhang: | ||
Zeile 369: | Zeile 369: | ||
Bruchteil = '''8''' <math> \qquad </math> Anteil= '''<math>\frac{4}{5}</math>''' | Bruchteil = '''8''' <math> \qquad </math> Anteil= '''<math>\frac{4}{5}</math>''' | ||
Ganze | Ganze = '''8''' <math> \cdot </math> '''<math>\frac{5}{4} </math>''' <math> \quad \overset{\text{kürzen}}{\underset{\text{mit 4}}{=}} </math> '''2''' <math> \cdot </math> '''<math> \frac{5}{1} </math>''' = '''10'''. | ||
Antwort: Kim hat zu ihrer Geburtstagsfeier 10 Freundinnen eingeladen. | Antwort: Kim hat zu ihrer Geburtstagsfeier 10 Freundinnen eingeladen. | ||
Zeile 375: | Zeile 375: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Das Ganze lässt sich mithilfe der allgemeinen Berechnungsweise Ganze = Bruchteil <math> : </math>Anteil berechnen. | Das Ganze lässt sich mithilfe der allgemeinen Berechnungsweise Ganze = Bruchteil <math> : </math>Anteil = Bruchteil <math> \cdot </math> Kehrbruch des Anteils berechnen. | ||
Wir üben nun gemeinsam die Berechnung des Ganzen in einem gegebenen Sachzusammenhang: | Wir üben nun gemeinsam die Berechnung des Ganzen in einem gegebenen Sachzusammenhang: | ||
Zeile 383: | Zeile 383: | ||
Bruchteil = 8 <math> \qquad </math> Anteil= <math>\frac{4}{5}</math> | Bruchteil = 8 <math> \qquad </math> Anteil= <math>\frac{4}{5}</math> | ||
Ganze | Ganze = 8 <math> \cdot </math> <math>\frac{5}{4} </math> <math> \quad \overset{\text{kürzen}}{\underset{\text{mit 4}}{=}} </math> 2 <math> \cdot </math> <math> \frac{5}{1} </math> = 10. | ||
Antwort: Kim hat zu ihrer Geburtstagsfeier 10 Freundinnen eingeladen. | Antwort: Kim hat zu ihrer Geburtstagsfeier 10 Freundinnen eingeladen. | ||
Zeile 484: | Zeile 484: | ||
Wir üben nun gemeinsam die Berechnung des Anteils in einem gegebenen Sachzusammenhang: | Wir üben nun gemeinsam die Berechnung des Anteils in einem gegebenen Sachzusammenhang: | ||
Kim kauft für ihre Geburtstagsfeier einen Kasten mit Cola,Orangen- und Zitronenlimonade. Von den 20 Flaschen sind 10 Flaschen Cola, 6 Flaschen Orangenlimonade und vier Flaschen Zitronenlimonade. Berechne den Anteil der Zitronenlimonadenflaschen an dem gesamten Kasten. | Kim kauft für ihre Geburtstagsfeier einen Kasten mit Cola, Orangen- und Zitronenlimonade. Von den 20 Flaschen sind 10 Flaschen Cola, 6 Flaschen Orangenlimonade und vier Flaschen Zitronenlimonade. Berechne den Anteil der Zitronenlimonadenflaschen an dem gesamten Kasten. | ||
Rechnung: | Rechnung: | ||
Bruchteil = '''4''' <math> \qquad </math> Ganze = '''20''' | Bruchteil = '''4''' <math> \qquad </math> Ganze = '''20''' | ||
Anteil | Anteil = '''4''':'''20''' <math> \quad \overset{\text{kürzen}}{\underset{\text{mit 4}}{=}} </math> '''1''':'''5''' | ||
Antwort: Der Anteil Zitronenlimonadenflaschen am gesamten Kasten beträgt <math> \frac{1}{5} </math>. | Antwort: Der Anteil Zitronenlimonadenflaschen am gesamten Kasten beträgt <math> \frac{1}{5} </math>. | ||
</div> | </div> | ||
{{Lösung versteckt|1= | |||
Der Anteil lässt sich mithilfe der allgemeinen Berechnungsweise Anteil = Bruchteil:Ganze berechnen. | |||
Wir üben nun gemeinsam die Berechnung des Anteils in einem gegebenen Sachzusammenhang: | |||
Kim kauft für ihre Geburtstagsfeier einen Kasten mit Cola, Orangen- und Zitronenlimonade. Von den 20 Flaschen sind 10 Flaschen Cola, 6 Flaschen Orangenlimonade und vier Flaschen Zitronenlimonade. Berechne den Anteil der Zitronenlimonadenflaschen an dem gesamten Kasten. | |||
Rechnung: | |||
Bruchteil = 4 <math> \qquad </math> Ganze = 20 | |||
Anteil = 4:20 <math> \quad \overset{\text{kürzen}}{\underset{\text{mit 4}}{=}} </math> 1:5 | |||
Antwort: Der Anteil Zitronenlimonadenflaschen am gesamten Kasten beträgt <math> \frac{1}{5} </math>. | |||
|2=Lösung|3=Verstecken}} | |||
|3=Arbeitsmethode}} | |3=Arbeitsmethode}} | ||
Zeile 672: | Zeile 687: | ||
|3=Arbeitsmethode}} | |3=Arbeitsmethode}} | ||
[[Kategorie:Algebra]] |
Aktuelle Version vom 24. April 2022, 10:03 Uhr
Herzlich Willkommen in dem Lernpfad "Bruchteil, Anteil und Ganzes bei der Bruchrechnung"!
Dieser Lernpfad wurde erstellt, um dein Wissen und deine Fähigkeiten im Umgang mit dem Bruchteil, Anteil und Ganzem innerhalb der Bruchrechnung zu verbessern.
Dafür erhältst du zuerst eine kurze Übersicht über Bruchteil, Anteil und Ganzes, bevor es darum geht, dass du Bruchteil, Anteil und Ganzes in gegebenen Situationen erkennen kannst. Der dritte Abschnitt ist dazu da, dass du Zusammenhänge zwischen Bruchteil, Anteil und Ganzes erkunden kannst. Im vierten Abschnitt wird dir die Möglichkeit geboten, Bruchteil, Anteil oder Ganzes zu berechnen, wenn jeweils die anderen Beiden gegeben sind. Du findest dabei immer zuerst eine Förderaufgabe zur jeweiligen Berechnungsweise, bevor du diese dann in einer weiteren Aufgabe jeweils üben kannst. Im fünften Abschnitt geht es darum, dass du erkennen kannst, ob Bruchteil, Anteil oder Ganzes berechnet werden soll. Zum Schluss kannst du das gelernte Wissen in einem Quiz überprüfen.
In diesem Lernpfad findest du Aufgaben mit diesem Bild. Diese Aufgaben sind Förderaufgaben und unterstützen dich besonders stark beim Umgang mit den neuen Inhalten.
Einige Aufgaben sind interaktiv gestaltet. Wenn du alle nötigen Angaben in die dafür vorgesehenen Felder geschrieben hast, oder alle Dinge passend einander zugeordnet hast, dann kannst du deine Lösung überprüfen, indem du auf diesen Button drückst: . Dieser befindet sich in der rechten unteren Ecke.
Was sind nochmal Bruchteil, Anteil und das Ganze?
Immer wenn wir einen Bruch gegeben haben, dann können wir den Bruchteil , den Anteil und das Ganze bestimmen. Als Ausgangspunkt dient das Ganze , von dem nur ein bestimmter Teil betrachtet werden soll (der Bruchteil ). Der Anteil stellt immer das Verhältnis zwischen dem Bruchteil und dem Ganzen dar. Der Anteil ergibt sich, indem der Bruchteil durch das Ganze dividiert wird.
In den folgenden zwei Beispielen, kannst du dir diese drei Teile eines Bruches (Bruchteil , Anteil , Ganzes ) mithilfe von zwei Abbildungen anschauen.
Betrachte eines Kreises.
Im ersten Beispiel wird das Ganze durch eine geometrische Form (Kreis) dargestellt. Du wirst aber auch mit Ganzen arbeiten müssen, welche nur aus einer Menge (Zahl) bestehen. In einem zweiten Beispiel kannst du dir anschauen, was in so einem Fall der Bruchteil , Anteil und das Ganze sind.
Betrachte nun von 8.
Du kannst im nachfolgenden Lückentext überprüfen, ob du nun weißt, was Bruchteil , Anteil und Ganzes sind.
Wenn du einen Bruch in einer Sachsituation gegeben hast, dann kannst du bei dem Bruch immer Bruchteil, Anteil und Ganzes betrachten. Das Ganze stellt den Ausgangspunkt dar, auf welchen sich der Bruchteil und der Anteil beziehen. Bei Brüchen wird meist nur ein gewisser Teil des Ganzen betrachtet. Dabei handelt es sich um den Bruchteil. Das Verhältnis zwischen Bruchteil und Ganzem spiegelt sich im Anteil wieder.
Bruchteil, Anteil und Ganzes erkennen
Zusammenhänge erkunden
Ziel dieser Aufgabe ist es, deine Entdeckungen in Geogebra in Merksätze zu formulieren.
Gehe bei der nun folgenden Übung wie folgt vor:
1. Schaue dir die angefangenen Sätze unter den Aufgabenstellungen an.
2. Stelle Vermutungen auf, wie sich Bruchteil (blau gefärbtes Rechteck), Anteil oder Ganzes (schwarz umrandetes Rechteck) in den jeweiligen Situationen verändern und schreibe deine Vermutungen auf einem Blatt Papier auf.
3. Scrolle nun weiter nach unten. Dort findest du vier Geogebra Applets. Untersuche nun die Veränderungen in den Geogebra Applets. Klicke dafür einfach auf diese und verändere mithilfe der Schieberegler die jeweils zugehörige Größe. In den Geogebra Applets ist das Ganze ist immer das schwarz umrandete Rechteck und der Bruchteil immer der blau gefärbte Teil des Rechtecks.
4. Vervollständige nun die angefangenen Sätze unter den Aufgabenstellungen und vergleiche sie mit deinen vorher aufgeschriebenen Vermutungen.
5. Überprüfe nun die vervollständigten Sätze. Schaue dir noch einmal die Geogebra Applets genau an, falls die Sätze nicht richtig sind.
Mit Bruchteil, Anteil und Ganzem rechnen
Der Bruchteil ist gesucht
In diesem Abschnitt ist immer der Anteil und das Ganze gegeben und es wird der Bruchteil gesucht. Wenn du nicht mehr weißt, wie du aus dem Anteil und dem Ganzen den Bruchteil berechnen kannst, dann schaue in die nachfolgende Erklärung.
Der Bruchteil gibt die Anzahl an Teilen wieder, die vom Ganzen ausgewählt werden.
Er lässt sich berechnen, indem du den Anteil mit dem Ganzen multiplizierst.
Beispiel:
Julia und Marvin besitzen zusammen 6 Mützen. davon gehören Marvin und gehören Julia. Wie viele Mützen gehören Marvin?
Rechnung: Wir multiplizieren mit 6 und erhalten .
Der Bruchteil lässt sich mithilfe der allgemeinen Berechnungsweise Bruchteil = Anteil Ganze berechnen. Wir üben nun gemeinsam die Berechnung des Bruchteils in einem gegebenen Sachzusammenhang:
Kim kauft für ihre Geburtstagsfeier Schokoladenriegel. Von den 24 Riegeln sind mit Nüssen, mit Kokos und mit Karamell. Berechne die Anzahl an gekauften Schokoladenriegeln mit Nüssen.
Rechnung: Anteil= Ganze = 24
Bruchteil = 24 8 = 16.
Antwort: Kim hat für ihre Geburtstagsfeier 16 Schokoladenriegel mit Nüssen gekauft.
Der Bruchteil lässt sich mithilfe der allgemeinen Berechnungsweise Bruchteil = Anteil Ganze berechnen. Wir üben nun gemeinsam die Berechnung des Bruchteils in einem gegebenen Sachzusammenhang:
Kim kauft für ihre Geburtstagsfeier Schokoladenriegel. Von den 24 Riegeln sind mit Nüssen, mit Kokos und mit Karamell. Berechne die Anzahl an gekauften Schokoladenriegeln mit Nüssen.
Rechnung: Anteil= Ganze = 24
Bruchteil = 24 8 = 16.
Antwort: Kim hat für ihre Geburtstagsfeier 16 Schokoladenriegel mit Nüssen gekauft.Berechne nun eigenständig den Bruchteil in den dargestellten Aufgaben in deinem Heft. Kürze dabei soweit wie möglich. Bei den Antworten musst du keine Einheiten angeben.
Wenn du auf diesen Button in der rechten oberen Ecke klickst, dann gelangst du in den Vollbildmodus.
Nachdem du alle Bruchteile berechnet hast, überprüfe selbst deine Lösung, indem du zu jeder Aufgabe die Lösung in das freie Feld einträgst und am Ende auf drückst.
Du multiplizierst einen Bruch mit einer natürlichen Zahl, indem du den Zähler mit der natürlichen Zahl multiplizierst und den Nenner beibehältst.
Beispiel:
Der Bruch soll mit der natürlichen Zahle multipliziert werden. Wir multiplizieren dann den Zähler () mit der natürlichen Zahl und behalten den Nenner () bei.
→
Alternativ kannst du schon vorher kürzen.
Ganze: 32 Anteil:
oder
Ganze: 60 Anteil:
oder
Ganze: 200 Anteil:
oder
Ganze: 36 Anteil:
oder
Ganze: 35 Anteil:
oder
Das Ganze ist gesucht
In diesem Abschnitt ist immer der Bruchteil und der Anteil gegeben und es wird das Ganze gesucht.
Damit du das Ganze berechnen kannst, musst du wissen, wie du eine natürliche Zahl durch einen Bruch dividieren kannst. Falls du nicht mehr genau weißt, wie das funktioniert, dann schaue in die versteckte Hilfestellung rein.
Du kannst eine natürliche Zahl durch einen Bruch dividieren, indem du die natürliche Zahl mit dem Kehrbruch des gegebenen Bruchs multiplizierst. Der Kehrbruch zu einem gegebenen Bruch erhältst du, indem du Zähler und Nenner des Bruchs vertauschst.
Beispiel:
Die natürliche Zahl 2 soll durch dividiert werden. Der Kehrbruch von ist . Wir multiplizieren nun 2 mit dem Kehrbruch ()
→
Auch hierbei kann schon früher gekürzt werdenWenn du nicht mehr weißt, wie du aus dem Bruchteil und dem Anteil das Ganze berechnen kannst, dann schaue in die nachfolgende Erklärung.
Das Ganze stellt die Ausgangsgröße dar.
Du erhältst das Ganze aus dem Bruchteil und dem Anteil indem du den Bruchteil durch den Anteil dividierst.
Beispiel:
Julia gehören 2 Mützen für den Winter. Das sind aller Mützen, die sie und ihr Bruder Marvin gemeinsam besitzen. Wie viele Mützen haben die beiden zusammen?
Rechnung: Wir teilen 2 durch und erhalten .
Das Ganze lässt sich mithilfe der allgemeinen Berechnungsweise Ganze = Bruchteil Anteil = Bruchteil Kehrbruch des Anteils berechnen. Wir üben nun gemeinsam die Berechnung des Ganzen in einem gegebenen Sachzusammenhang:
Zu Kims Geburtstagsfeier kommen 8 Freundinnen. Das sind der Freundinnen, die Kim eingeladen hat. Berechne die Anzahl der Freundinnen, die insgesamt eingeladen wurden.
Rechnung: Bruchteil = 8 Anteil=
Ganze = 8 2 = 10.
Antwort: Kim hat zu ihrer Geburtstagsfeier 10 Freundinnen eingeladen.
Das Ganze lässt sich mithilfe der allgemeinen Berechnungsweise Ganze = Bruchteil Anteil = Bruchteil Kehrbruch des Anteils berechnen. Wir üben nun gemeinsam die Berechnung des Ganzen in einem gegebenen Sachzusammenhang:
Zu Kims Geburtstagsfeier kommen 8 Freundinnen. Das sind der Freundinnen, die Kim eingeladen hat. Berechne die Anzahl der Freundinnen, die insgesamt eingeladen wurden.
Rechnung: Bruchteil = 8 Anteil=
Ganze = 8 2 = 10.
Antwort: Kim hat zu ihrer Geburtstagsfeier 10 Freundinnen eingeladen.Berechne nun selbst in deinem Heft das Ganze in den dargestellten Aufgaben.
Wenn du auf diesen Button in der rechten oberen Ecke klickst, dann gelangst du in den Vollbildmodus.
Nachdem du alle Ganze berechnet hast, überprüfe selbst deine Lösung, indem du zu jeder Aufgabe das jeweilige Ganze ziehst.
Bruchteil: 8 Anteil:
Bruchteil: 18 Anteil:
oder
Bruchteil: 15 Anteil:
oder
Bruchteil: 22 Anteil:
oder
Bruchteil: 9 Anteil:
oder
Der Anteil ist gesucht
In diesem Abschnitt ist immer der Bruchteil und das Ganze gegeben und es wird der Anteil gesucht.
Wenn du nicht mehr weißt, wie du aus dem Bruchteil und dem Ganzen den Anteil berechnen kannst, dann schaue in die nachfolgende Erklärung.
Der Anteil stellt das Verhältnis zwischen dem Bruchteil und dem Ganzen dar.
Er lässt sich berechnen, indem du den Bruchteil durch das Ganze dividierst.
Beispiel:
Julia und Marvin besitzen zusammen 6 Mützen. Vier davon gehören Marvin und zwei gehören Julia. Wie groß ist der Anteil von Julias Mützen an allen Mützen der beiden?
Rechnung: Wir teilen 2 durch 6 und erhalten .
Der Anteil lässt sich mithilfe der allgemeinen Berechnungsweise Anteil = Bruchteil:Ganze berechnen.
Wir üben nun gemeinsam die Berechnung des Anteils in einem gegebenen Sachzusammenhang:
Kim kauft für ihre Geburtstagsfeier einen Kasten mit Cola, Orangen- und Zitronenlimonade. Von den 20 Flaschen sind 10 Flaschen Cola, 6 Flaschen Orangenlimonade und vier Flaschen Zitronenlimonade. Berechne den Anteil der Zitronenlimonadenflaschen an dem gesamten Kasten.
Rechnung: Bruchteil = 4 Ganze = 20
Anteil = 4:20 1:5 Antwort: Der Anteil Zitronenlimonadenflaschen am gesamten Kasten beträgt .
Der Anteil lässt sich mithilfe der allgemeinen Berechnungsweise Anteil = Bruchteil:Ganze berechnen.
Wir üben nun gemeinsam die Berechnung des Anteils in einem gegebenen Sachzusammenhang:
Kim kauft für ihre Geburtstagsfeier einen Kasten mit Cola, Orangen- und Zitronenlimonade. Von den 20 Flaschen sind 10 Flaschen Cola, 6 Flaschen Orangenlimonade und vier Flaschen Zitronenlimonade. Berechne den Anteil der Zitronenlimonadenflaschen an dem gesamten Kasten.
Rechnung: Bruchteil = 4 Ganze = 20
Anteil = 4:20 1:5
Antwort: Der Anteil Zitronenlimonadenflaschen am gesamten Kasten beträgt .Berechne nun eigenständig die Anteile der dargestellten Aufgaben in deinem Heft. Kürze dabei soweit wie möglich.
Wenn du auf diesen Button in der rechten oberen Ecke klickst, dann gelangst du in den Vollbildmodus.
Nachdem du alle Anteile berechnet hast, überprüfe selbst deine Lösung, indem du zu jeder Aufgabe den jeweiligen Anteil ziehst.
Ganze: 75 Bruchteil: 45
Ganze: 360 Bruchteil: 360-280=80
Ganze: 26 Bruchteil: 8
Ganze: 28 Bruchteil: 10
Ganze: 24 Bruchteil: 4
Wonach ist gesucht?
In dieser Aufgabe musst du erkennen, ob der Bruchteil, der Anteil oder das Ganze berechnet werden soll und angeben, wie dieser berechnet wird. Wähle dazu für jede Lücke die passende Möglichkeit aus.
Teste dein neues Wissen
Du kannst bei gegebenen Situationen erkennen, was Bruchteil, Anteil und Ganzes sind und nach welcher dieser drei Größen gefragt ist? Zusätzlich kannst du den Bruchteil, Anteil und das Ganze berechnen, wenn diese gesucht sind?
Dann teste in dem folgenden Quiz dein können und schaffe es Bruch-Millionär zu werden!
Berechne dafür die Ergebnisse auf einem Blatt Papier und kreuze die richtige Antwort an.
Viel Erfolg!
Wenn du Schwierigkeiten dabei hast zu erkennen, ob der Bruchteil, der Anteil oder das Ganze berechnet werden soll, dann schaue dir nochmal Aufgabe 9 genauer an.
Wenn du Schwierigkeiten mit der Berechnung des Bruchteils hast, dann schaue dir nochmal die Aufgaben 3. und 4. an.
Wenn du Schwierigkeiten mit der Berechnung des Ganzen hast, dann schaue dir nochmal die Aufgaben 5. und 6. an.
Bruchteil: Anteil:
Ganze ist gesucht:
oder
Ganze: Bruchteil:
Anteil ist gesucht:
Ganze: Anteil: Es gibt Rabatt auf den Schal, also beträgt der noch zu zahlende Anteil
Bruchteil ist gesucht:
oder
Ganze: Anteil von Amy: Anteil von Emil:
Um den Bruchteil von Alicia zu berechnen, werden erst die Bruchteile von Amy und Emil berechnet und die Summe der beiden von der Gesamtanzahl der Stimmen subtrahiert.
Bruchteil von Amy:
Bruchteil von Emil:
Zusammen haben Amy und Emil bei der Klassensprecherwahl 17 Stimmen erhalten. Alicia hat alle anderen Stimmen bekommen, daher ist der Bruchteil von Alicia:
Bruchteil: Anteil:
Ganze ist gesucht:
Ganze: Bruchteil:
Anteil ist gesucht: