Jahrgangsstufentest/BMT8 2007: Unterschied zwischen den Versionen
K (29 Versionen importiert) |
Keine Bearbeitungszusammenfassung |
||
(7 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
[https://www.isb.bayern.de/gymnasium/leistungserhebungen/jahrgangsstufenarbeiten-gymnasium/mathematik/2007/ '''Test und Lösungshinweise zum Download'''] | |||
[ | |||
<div class="rahmen"> | |||
<big>'''Aufgabe 1'''</big> | |||
[[Bild:2007 8A Aufgabe1.jpg|right]] | |||
Für eine Ausstellung über Bayern soll auf einem großen Werbebanner die Statue der Bavaria abgebildet werden. Als Bildmotiv wird nebenstehendes Foto so vergrößert, dass es 20 m hoch ist. | |||
Welche Gesamthöhe hat dann die Statue auf dem Werbebanner (ohne Sockel gemessen, Ergebnis auf Meter genau)? | Welche Gesamthöhe hat dann die Statue auf dem Werbebanner (ohne Sockel gemessen, Ergebnis auf Meter genau)? | ||
Der Lösungsweg muss nachvollziehbar sein. | Der Lösungsweg muss nachvollziehbar sein. | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
:Die Statue hat dann eine Gesamthöhe von '''16m'''. | :Die Statue hat dann eine Gesamthöhe von '''16m'''. | ||
Zeile 30: | Zeile 21: | ||
::<math>h_{Statue} = \frac{4}{5}\cdot h_{Banner} = \frac{4}{5}\cdot 20m = 16m</math> | ::<math>h_{Statue} = \frac{4}{5}\cdot h_{Banner} = \frac{4}{5}\cdot 20m = 16m</math> | ||
}} | }} | ||
</div> | </div> | ||
<div class="rahmen"> | |||
<div | |||
<big>'''Aufgabe 2a'''</big> | <big>'''Aufgabe 2a'''</big> | ||
Zeile 46: | Zeile 35: | ||
{| | {| | ||
|width="100px"| | | width="100px" | | ||
|[[Bild:2007 8A Aufgabe2.jpg]] | |[[Bild:2007 8A Aufgabe2.jpg]] | ||
|width="100px"| | | width="100px" | | ||
|[[Datei:BMT8_07_A02a_01.jpg|180px]] | |[[Datei:BMT8_07_A02a_01.jpg|180px]] | ||
|} | |} | ||
{{Lösung versteckt|1= | |||
:Erläuterung: | :Erläuterung: | ||
::[[Datei:BMT8 07 A2a 02.jpg|180px]] | ::[[Datei:BMT8 07 A2a 02.jpg|180px]] | ||
Zeile 59: | Zeile 47: | ||
}} | }} | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 2b'''</big> | <big>'''Aufgabe 2b'''</big> | ||
Zeile 72: | Zeile 57: | ||
</div> | </div> | ||
<div class="rahmen"> | |||
<div | |||
<big>'''Aufgabe 3'''</big> | <big>'''Aufgabe 3'''</big> | ||
Wandle jeweils in die in Klammern angegebene Einheit um. | Wandle jeweils in die in Klammern angegebene Einheit um. | ||
:*4,35 km (m) | :*4,35 km (m) | ||
:*450 g (kg) | :*450 g (kg) | ||
:*3500 cm<sup>2</sup> (dm<sup>2</sup>) | :*3500 cm<sup>2</sup> (dm<sup>2</sup>) | ||
:*eine Viertelstunde (s) | :*eine Viertelstunde (s) | ||
{{Lösung versteckt|1= | |||
:*4,35 km = 4350 m | :*4,35 km = 4350 m | ||
:*450 g = 0,45 kg | :*450 g = 0,45 kg | ||
Zeile 96: | Zeile 78: | ||
}} | }} | ||
</div> | </div> | ||
<div | <div class="rahmen"> | ||
<big>'''Aufgabe 4a'''</big> | <big>'''Aufgabe 4a'''</big> | ||
Zeile 109: | Zeile 89: | ||
{{Lösung versteckt|1= | |||
:Zeichne zwei Kreise mit den Mittelpunkten A und B und dem selben Radius. Die Gerade durch die beiden Schnittpunkte der Kreise ist die gesuchte Mittelsenkrechte. | :Zeichne zwei Kreise mit den Mittelpunkten A und B und dem selben Radius. Die Gerade durch die beiden Schnittpunkte der Kreise ist die gesuchte Mittelsenkrechte. | ||
:Der Schnittpunkt der Mittelsenkrechten mit der Strecke [AB] ist der Mittelpunkt des Kreises, der [AB] als Durchmesser hat. | :Der Schnittpunkt der Mittelsenkrechten mit der Strecke [AB] ist der Mittelpunkt des Kreises, der [AB] als Durchmesser hat. | ||
Zeile 118: | Zeile 97: | ||
}} | }} | ||
</div> | </div> | ||
<div | <div class="rahmen"> | ||
<big>'''Aufgabe 4b'''</big> | <big>'''Aufgabe 4b'''</big> | ||
Zeile 128: | Zeile 105: | ||
liegt, und deshalb von A und B gleich weit entfernt ist. Begründe, dass das Dreieck ABC auch rechtwinklig ist. | liegt, und deshalb von A und B gleich weit entfernt ist. Begründe, dass das Dreieck ABC auch rechtwinklig ist. | ||
{{Lösung versteckt|1= | |||
:Dreieck ABC ist rechtwinklig bei C, weil C auf dem '''Thaleskreis''' über [AB] liegt. | :Dreieck ABC ist rechtwinklig bei C, weil C auf dem '''Thaleskreis''' über [AB] liegt. | ||
}} | }} | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 4c'''</big> | <big>'''Aufgabe 4c'''</big> | ||
Zeile 153: | Zeile 126: | ||
</div> | </div> | ||
<div class="rahmen"> | |||
<div | |||
<big>'''Aufgabe 5a'''</big> | <big>'''Aufgabe 5a'''</big> | ||
Berechne den Wert des Terms <math> \left(\frac{3}{4} \cdot \frac{4}{5} - \frac{1}{3}\right) : 0,5</math> | Berechne den Wert des Terms <math> \left(\frac{3}{4} \cdot \frac{4}{5} - \frac{1}{3}\right) : 0,5</math> | ||
{{Lösung versteckt|1= | |||
:Der Wert des Terms beträgt '''<math>\textstyle\frac{8}{15}</math>'''. | :Der Wert des Terms beträgt '''<math>\textstyle\frac{8}{15}</math>'''. | ||
Zeile 169: | Zeile 139: | ||
}} | }} | ||
</div> | </div> | ||
<div | <div class="rahmen"> | ||
<big>'''Aufgabe 5b'''</big> | <big>'''Aufgabe 5b'''</big> | ||
Zeile 178: | Zeile 146: | ||
doppelten Termwert erhält? | doppelten Termwert erhält? | ||
{{Lösung versteckt|1= | |||
:0,5 muss durch '''0,25''' ersetzt werden. | :0,5 muss durch '''0,25''' ersetzt werden. | ||
Zeile 187: | Zeile 154: | ||
}} | }} | ||
</div> | </div> | ||
<div | <div class="rahmen"> | ||
<big>'''Aufgabe 6a'''</big> | <big>'''Aufgabe 6a'''</big> | ||
Zeile 200: | Zeile 165: | ||
Um wie viel Prozent verkürzte sich die Fahrzeit von Frau Dorn? | Um wie viel Prozent verkürzte sich die Fahrzeit von Frau Dorn? | ||
{{Lösung versteckt|1= | |||
:Die Fahrzeit verkürzte sich um '''60 %'''. | :Die Fahrzeit verkürzte sich um '''60 %'''. | ||
Zeile 209: | Zeile 173: | ||
}} | }} | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 6b'''</big> | <big>'''Aufgabe 6b'''</big> | ||
Zeile 221: | Zeile 182: | ||
</div> | </div> | ||
<div | <div class="rahmen"> | ||
<big>'''Aufgabe 7a'''</big> | <big>'''Aufgabe 7a'''</big> | ||
Zeile 232: | Zeile 191: | ||
{{Lösung versteckt|1= | |||
:'''a <sup>2</sup> - 1,5 ab + 2 b<sup>2</sup>''' | :'''a <sup>2</sup> - 1,5 ab + 2 b<sup>2</sup>''' | ||
Zeile 241: | Zeile 199: | ||
}} | }} | ||
</div> | </div> | ||
<div | <div class="rahmen"> | ||
<big>'''Aufgabe 7b'''</big> | <big>'''Aufgabe 7b'''</big> | ||
Zeile 252: | Zeile 208: | ||
{{Lösung versteckt|1= | |||
:'''2x<sup>3</sup>''' | :'''2x<sup>3</sup>''' | ||
Zeile 260: | Zeile 215: | ||
}} | }} | ||
</div> | </div> | ||
<div | <div class="rahmen"> | ||
<big>'''Aufgabe 8'''</big> | <big>'''Aufgabe 8'''</big> | ||
Zeile 271: | Zeile 224: | ||
:[[Datei:BMT8_07_A08_01.jpg]] | :[[Datei:BMT8_07_A08_01.jpg]] | ||
{{Lösung versteckt|1= | |||
:Der Flächeninhalt des Viereck beträgt '''12 FE''' bzw. '''12 cm<sup>2</sup>'''. | :Der Flächeninhalt des Viereck beträgt '''12 FE''' bzw. '''12 cm<sup>2</sup>'''. | ||
Zeile 283: | Zeile 235: | ||
}} | }} | ||
</div> | </div> | ||
<div | <div class="rahmen"> | ||
<big>'''Aufgabe 9'''</big> | <big>'''Aufgabe 9'''</big> | ||
Zeile 298: | Zeile 248: | ||
Flächeninhalt des Lochs genauso groß sein soll wie der Flächeninhalt der Restfläche. | Flächeninhalt des Lochs genauso groß sein soll wie der Flächeninhalt der Restfläche. | ||
{{Lösung versteckt|1= | |||
:mögliche Lösungen sind z.B. '''1 = 4cm und b = 1,25 cm''' oder '''1 = 3cm und b = 5/3 cm''' | :mögliche Lösungen sind z.B. '''1 = 4cm und b = 1,25 cm''' oder '''1 = 3cm und b = 5/3 cm''' | ||
Zeile 306: | Zeile 256: | ||
}} | }} | ||
</div> | </div> | ||
[[Kategorie: | [[Kategorie:Vergleichsarbeiten]] | ||
[[Kategorie:Mathematik]] | [[Kategorie:BMT 8 Mathematik]] | ||
[[Kategorie:Jahrgangsstufentests]] | |||
[[Kategorie:Mathematik-digital]] | |||
[[Kategorie:Sekundarstufe 1]] | |||
[[Kategorie:Interaktive Übung]] |
Aktuelle Version vom 23. April 2022, 17:59 Uhr
Test und Lösungshinweise zum Download
Aufgabe 1
Für eine Ausstellung über Bayern soll auf einem großen Werbebanner die Statue der Bavaria abgebildet werden. Als Bildmotiv wird nebenstehendes Foto so vergrößert, dass es 20 m hoch ist.
Welche Gesamthöhe hat dann die Statue auf dem Werbebanner (ohne Sockel gemessen, Ergebnis auf Meter genau)?
Der Lösungsweg muss nachvollziehbar sein.
- Die Statue hat dann eine Gesamthöhe von 16m.
- Möglicher Lösungsweg:
- Man misst die Höhe des Fotos (z.B. 5cm) und der Statue auf dem Foto ohne Sockel (z.B. 4cm).
- Die Höhe der Statue auf dem Foto entspricht also der Höhe des Fotos.
- Damit entspricht auch die Höhe der Statue auf dem Banner der Höhe des Banners:
Aufgabe 2a
Die Tabelle zeigt für einen bayerischen Landkreis die prozentuale Verteilung der Schülerinnen und Schüler in der Jahrgangsstufe 8 auf die einzelnen Schularten im Schuljahr 2005/06.
Diese Verteilung soll in nebenstehendem Kreisdiagramm veranschaulicht werden; die Sektoren für die Hauptschule und die Realschule sind bereits eingetragen.
Ergänze im Diagramm die beiden fehlenden Sektoren und beschrifte sie.
Hinweis für die Online-Version: Du kannst dein Vorgehen auch beschreiben.
Aufgabe 2b
Die vier Sektoren des vollständigen Kreisdiagramms sollen mit den vier Farben Blau, Grün, Orange und Rot gefüllt werden, jeder in einer anderen Farbe. Wie viele unterschiedliche Farbgebungen sind möglich?
(!4 · 4 · 4 · 4 = 256) (4 · 3 · 2 · 1 = 24) (!4 + 3 + 2 +1 = 10) (!4 · 4 = 16)
Aufgabe 3
Wandle jeweils in die in Klammern angegebene Einheit um.
- 4,35 km (m)
- 450 g (kg)
- 3500 cm2 (dm2)
- eine Viertelstunde (s)
- 4,35 km = 4350 m
- 450 g = 0,45 kg
- 3500 cm2 = 35dm2
- eine Viertelstunde = 900s
Aufgabe 4a
Konstruiere die Mittelsenkrechte der Strecke [AB] und zeichne den Kreis, der [AB] als Durchmesser hat.
Aufgabe 4b
C ist derjenige Schnittpunkt von Mittelsenkrechte und Kreis, der oberhalb der Strecke [AB] liegt. Das Dreieck ABC ist dann gleichschenklig, weil C auf der Mittelsenkrechten von [AB] liegt, und deshalb von A und B gleich weit entfernt ist. Begründe, dass das Dreieck ABC auch rechtwinklig ist.
- Dreieck ABC ist rechtwinklig bei C, weil C auf dem Thaleskreis über [AB] liegt.
Aufgabe 4c
Es gilt:
- In jedem gleichschenklig-rechtwinkligen Dreieck zerlegt die Mittelsenkrechte der Basis das Dreieck in zwei kongruente Teildreiecke.
Kreuze an, welche der folgenden Argumentationen richtig sind.
Die zwei Teildreiecke sind kongruent, ... (...weil die Mittelsenkrechte Symmetrieachse des gleichschenklig-rechtwinkligen Dreiecks ist.) (!...weil man zeigen kann, dass die Teildreiecke in allen drei Winkeln übereinstimmen und Dreiecke, die in allen drei Winkeln übereinstimmen, immer kongruent sind.) (...weil man zeigen kann, dass die Teildreiecke in allen drei Seiten übereinstimmen und Dreiecke, die in allen drei Seiten übereinstimmen, immer kongruent sind.) (!...weil man zeigen kann, dass die Flächeninhalte der Teildreiecke gleich groß sind und Dreiecke, die den gleichen Flächeninhalt besitzen, immer kongruent sind.)
Aufgabe 5a
Berechne den Wert des Terms
- Der Wert des Terms beträgt .
- möglicher Rechenweg:
Aufgabe 5b
Durch welche Zahl muss man die Zahl 0,5 im obigen Term ersetzen, damit man den doppelten Termwert erhält?
- 0,5 muss durch 0,25 ersetzt werden.
- Begründung:
- Wird bei einem Quotienten der Divisor halbiert, so verdoppelt sich der Wert des Quotienten.
Aufgabe 6a
Im Jahr 2006 hat die Deutsche Bahn zwischen Nürnberg und Ingolstadt eine 89 km lange ICE – Hochgeschwindigkeitsstrecke in Betrieb genommen. Frau Dorn, die regelmäßig mit dem Zug von Nürnberg nach Ingolstadt fährt, stellt fest: „Für mich verkürzte sich die Fahrzeit von 70 Minuten auf 28 Minuten.“
Um wie viel Prozent verkürzte sich die Fahrzeit von Frau Dorn?
- Die Fahrzeit verkürzte sich um 60 %.
- möglicher Rechenweg:
- Die Fahrzeit verkürzte sich um 42 Minuten.
- Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \frac{42}{70} = \frac{6}{10} = 60%}
Aufgabe 6b
Welcher Term beschreibt die Durchschnittsgeschwindigkeit in km/h, die der ICE auf der Hochgeschwindigkeitsstrecke besitzt?
(!) (!) () (!)
Aufgabe 7a
Multipliziere aus und vereinfache:
- a 2 - 1,5 ab + 2 b2
- möglicher Lösungsweg:
Aufgabe 7b
Vereinfache so weit wie möglich:
- 2x3
- möglicher Lösungsweg:
Aufgabe 8
Berechne den Flächeninhalt des abgebildeten Vierecks ABCD.
- Der Flächeninhalt des Viereck beträgt 12 FE bzw. 12 cm2.
Aufgabe 9
In Rechtecke der Länge 5 cm und der Breite 2 cm wird jeweils ein rechteckiges Loch so geschnitten, dass rundum ein Randstreifen bleibt.
Mögliche Figuren sind z. B.: oder
Nicht erlaubt sind z. B.: oder
Gib zwei Möglichkeiten an, wie lang und breit solch ein Loch sein kann, wenn der Flächeninhalt des Lochs genauso groß sein soll wie der Flächeninhalt der Restfläche.
- mögliche Lösungen sind z.B. 1 = 4cm und b = 1,25 cm oder 1 = 3cm und b = 5/3 cm
- Erläuterung:
- Das Rechteck hat einen Flächeninhalt von 10 cm2. Da die Flächeninhalte des rechteckigen Lochs und der Restfläche gleich groß sein sollen, beträgt der Flächeninhalt des Lochs 5 cm2. Für die Länge und die Breite des Lochs wählt man daher Werte, deren Produkt 5 cm2 ergibt, mit der Einschränkung, dass die Länge kleiner als 5 cm und die Breite kleiner als 2 cm ist (da rundum ein Randstreifen übrig bleiben soll).