Nachricht für neue Nutzer.
Nachricht für engagierte Nutzer.
Einführung in quadratische Funktionen/allgemeine Form: Unterschied zwischen den Versionen
K (Textersetzung - „{{Quadratische Funktionen}}“ durch „{{Einführung in die quadratischen Funktionen}}“) |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
(2 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
{{Navigation verstecken| | {{Navigation verstecken| | ||
{{Einführung in | {{Einführung in quadratische Funktionen}} | ||
|Lernschritte einblenden | |Lernschritte einblenden | ||
|Lernschritte ausblenden | |Lernschritte ausblenden | ||
Zeile 88: | Zeile 88: | ||
[[Kategorie:Interaktive Übung]] | [[Kategorie:Interaktive Übung]] | ||
[[Kategorie:GeoGebra]] | [[Kategorie:GeoGebra]] |
Aktuelle Version vom 29. März 2022, 22:23 Uhr
Im vorigen Kapitel hatten wir es mit einer Funktion zu tun, die neben dem reinquadratischen Teil (dem Bremsweg) auch noch einen linearen Teil (den Reaktionsweg) besaß. Den allgemeinsten Fall einer quadratischen Funktion haben wir, wenn die Funktionsgleichung folgende Form hat:
Experimentiere mit dem Applet und erläutere, welchen Einfluss die Parameter a, b und c auf den Verlauf des Graphen haben.

Stelle die drei Schieberegler so ein, dass der schwarze Graph genau auf dem
- roten
- grünen
- blauen
Graphen liegt.

Untersuche nun die Funktionen f mit f(x) = 1,5x2 + 9x + 11,5 und g mit g(x) = - 0,5x2 + x + 2,5
- Zeichne mit Hilfe einer Wertetabelle die Graphen Gf und Gg in ein gemeinsames Koordinatensystem.
- Gib die Koordinaten der beiden Scheitel Sf und Sg an.
- Vergleiche die beiden Parabeln mit der Normalparabel.
Die allgemeine quadratische Funktion in der Anwendung
Der Term einer allgemeinen quadratischen Funktion enthält einen reinquadratischen Teil (ax2), einen linearen Teil (bx) und einen konstanten Teil (c).
Du hast in den vorangegangenen Kapiteln erfahren, dass sich beim Bremsen eines Pkws der Zusammenhang zwischen der Geschwindigkeit und dem zurückgelegten Weg durch eine quadratische Funktion der Form f(x) = ax2 + bx beschreiben lässt, wobei der reinquadratische Teil den Bremsweg und der lineare Teil den Reaktionsweg bestimmt.
Welche Bedeutung hat der konstante Teil des Funktionsterms im Anwendungsbeispiel "Abbremsen eines Pkw"?