Vektorrechnung/WHG Q1 Vektoraddition: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Zeile 24: Zeile 24:
|Informationen anzeigen|Informationen verbergen}}
|Informationen anzeigen|Informationen verbergen}}
<br>
<br>
 
<ggb_applet width="500" height="400" version="4.0" ggbbase64="UEsDBBQACAgIAFqPMVEAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztmk9T4zYUwM/dT+HRqT2QSI6dBAazw+5Mp8ywLFOYTq+KrTgqiuRaMjh8+sqSYzubmAUHSNJdDshP1t/fe3p6knP6MZ8z556kkgoeANSDwCE8FBHlcQAyNT0ag49nH05jImIySbEzFekcqwD4RcmqnpZ6Q+gVeThJAhAyLCUNgZMwrIoqARDTKaOcAMfJJT3h4grPiUxwSG7CGZnjSxFiZdqaKZWc9PsPDw+9Za89kcZ93bDs5zLqx7Hq6RQ4euhcBqB8ONHtrtR+GJh6LoSo//eXS9vPEeVSYR7qgehpRWSKM6akfiSMzAlXjlokJACJoFwBh+EJYQG4LiTn12lKyG/AKStpWhCcffjlVM7EgyMm/5BQ56k0I1U9I/SLMvr1Z8FE6qQBGI2AE9tkEgDX9zU0lsxwAKAtzPCCpM49ZlUOzpQITX2TO8VMkmVZ3dMXERH7xivLczo3OB2piNYH7CHgyISQSI8alHNERj0Lo+lGi6EQaSSdPABX+Ao4izJ9tKkpYujc0MeyU7+ZqxaMNMZ+2i/BPg9xRBLCI11ohTPqxHk4NpyLZGKTw8bsvTXm4YFg3gFk9HLKX3mTrduJLXJ9A9ek7+UsDsJVXPA/SazH3GQ8+Mn4VRmvWrDXiS40bOGBkjVFLENZ/NeRjZgnjOSvCN5GRSXESyNU0N1uEUYTOtzRtgc7Qy+AWHxqRsM7TqQs2NbtFg9/0EjvX6Y/oaNIqnRLaDS2LZB/+YrSqNYZ1WWeVsQ046EyLqWE+zlL75vaGHhwF/qo2+y8AlqUsS3pdpaSxIVUcblZyrVpdwvqfnTTFpliRc8XXOnDFzEGK9cmd0dIcqub+spvU8xlcQJbtaV2zaV48ZTW/EPQ2o+ms6Xn4vc4rTTR1Fq3yKh17+65/q5V9wI33gSxfRCzV+b7QtvcyoiG3Za+C73N9HqjPTaiez09UWP4qxTrUOBnYNbFE26Ip3GqiKSYf+90whZxY01fL+VKIyOrke3H2K7TBq2VA6Q/MGr10ZqJI2j/kHcMERoid38tviC8chS5rjJqxujNGR/YumnnGQpeXIAvjxJWqkh6B+E/3u8koc9sNCbcul3pODk0xRbQVH6E5aeJHBl5gczbR2SzTX098JTmzrmtcW4Lnrs2GdjEs4lfAep2UDSqTbTjagTK3+wPXrfTzSG5kv+l0t8hWOfZnKQN13C1lCvj8a1z0O1lZEW1z3AFbXbSbhWS0Uib0JxqJR1p7c1xbrSIJ1KwTJGbMCWE19/nrBk/0EjNiuhO9z2leWEutk1nJlL6KLiqaDjFKjhn5kveym3GJvNxnwpeV4x1O/eMeczq1XhupVoD9rreFPr2Jm+TYpoMYYlw2HPHAzT2B3CERsf+ePhMpGhcI7Uvnk103T4QfAULedE6dzetc5yG9TXpAG52PLAH0cjzB+6x66PjY08/+K9/Gvy9yqhPNvt4q2csYK3om13YMRFmsr6GtlJFaPw9Qi2h8d7GKzjLKaM4XWxn7C9CrEheRwy3Rmj8lGAPA8L2qWjscT20Cys1vtfbyUyppsjxXFewnVD+CYd3cSoyHq3vQ68ydbRr22qHNhGCEVx7ok9LufGVeG3nbwNUbra7PC2EMxLeTUS+slk97WSorFfApREaX283rIDnz3J9ozvauSl0uZ9r+6i4MRRpku43fsvUX/5w6uw/UEsHCKgZt7nzBAAA4CUAAFBLAwQUAAgICABajzFRAAAAAAAAAAAAAAAAFwAAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1s7ZjdbtMwFMev4Sks39PYaZIt0zJUwQVIMA1xw62XnLaGxA62uzZ7Nd6BZ+LEzroUVsSqbRKIXuz46xzbv/+JE+/05aapyRUYK7UqKJ8wSkCVupJqUdCVm784pi/Pnp8uQC/g0ggy16YRrqBpP3Lrh7VJxpK+TbRtQctaWCtLStpauN6loHo+r6UCSsjGyhOlz0UDthUlfCyX0Ih3uhTOx1o6155E0Xq9ntzMOtFmEWFgG21sFS0WboKWEly6sgUdCicYd8d7PfV+MWM8+vT+XZjnhVTWCVXiQnBbFczFqnYWi1BDA8oR17WAG9BKllOcoxaXUBf0rXK4Vyj7JZJyZa7Qf3Au6JSnjJ49f3Zql3pN9OVnHFdQZ1aw9feVqB+D3a90rQ0xBY05JYiZM7SXaPMY+dXtUhSUTTgLP57kjPOMx8G/Fh0YciUwKAstYuV06UP61rmoLdyMxcnf6wpCTzKMV7LxrIl1gGLh5LYFqHwpbJ955TqfBON4KOBH19VA3FKWXxRYxJ+OnPrCG1lV0OdS8AG5AHWFRLSxqD3zs3TMD79mQ8ptuK933Pde89Ds/XGpRm7ILHjMwsBZHMw0mCSYdIsEvqqwTtv/LWgrDKYbBir7/tNoEPsX2cVG2unrrWqzoTpSmk0PUpp5oZmXmd2K/FiSYvY8rqj7+ZKhDLjr799+j9s/SKUwDqwUavS4veo7fiaf/Q3kH5P7fpAYX8GI34Wv7/DDY/AgfnnuAcY89wi93Z5R6UNhLLU2lSWbgp6LczwIBns92HWwfuhc9C+nYba9p+RdcNmBcHXdLaEyWt3yHTXdIp4OiA95ou4rC0+nXpeU/5zZk2RAkub4Ss6SB9Po0FS/F9mZKZeygQrELloU9qnQxjy8lpMjj7Y3/wbbiw5PZlntcn26lPVHBy4+D1zjfyZnL4y0zS5V/oRUs3BAB6p59ldSVeC2+zzvy+NTNf1/qt6H5deVqPyX2LDVDzf1MVN+4IVl/9GYJXn/O8p4esyTmD8UoMe4dNx55egbw72iC+Y63ga87y2EzLJgjoI5Dibfe0ORTVvLUrrfS2tXZo5X5rs+mYeuXZWTw1RGvzs/midHf5r2t4Gf5LOZ/+mXXTS68Uc3/144+wFQSwcIbDxgZVADAAAGEQAAUEsDBBQACAgIAFqPMVEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAFqPMVEAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vptc9s2Ev6c/goMP9wkc5ZE8E1STkrHctReZ5wmU6edzk2/QCQkIaZIloBsqU3/e3cBkiJNv0ixY/vqsQwCXCywz7NYLCCPvt2sYnLBcynSZGzRrm0RnoRpJJLF2FqreWdgffvmm9GCpws+yxmZp/mKqbHlo2TVD2rdwPawjWXZ2ApjJqUILZLFTGGXsZXO57FIuEVEBOMMptPvTia0Q72+3/HeetPO8XRgdyZ23wmo+x0dBFOLkI0Ur5P0R7biMmMhPwuXfMVO05ApPepSqex1r3d5edkt59dN80UPpiB7Gxn1FotZF0qLgJGJHFvFw2vQ2+h96ep+jm3T3q/vTs04HZFIxZIQpowArMWbb16MLkUSpZfkUkRqObYc6g8ssuRisQRIhoFjkR5KZYBLxkMlLriEvrWqtl6tMkuLsQTfvzBPJK4Ms0gkLkTE87Fld20vcN2hYzvDwO/bg+HQImkueKIKYVoM2ivVjS4EvzR68UkP6VlEpWk8Y6iSfP5MQJ9NjrCgpnBMq22qtmsKxxSeKXwj45menhH1jIxnZDwX3EJIMYv52JqzWCLjyTwHDqu6VNuY66kUDTvL6RGYI8UfIAzjWcTgDXM+so88W3+MuTXbaG1Ela9vHdC8r41XjkYDOthvOOdeBroN8xSbja3j0++nk5+Om6M7N4w+qBFJka3PhCJNunAJEkQ1UVh4RTUw1b4uqF20DkzrEKvB/VirUPRrnPn2kf7VnzZrDzSka+89pHsQdTe6ygEjBo119zAGe4P9MXYGjz6mZw/7DwKzR519x+zb14Y3U9KifBjyh/uT76MB9WkRSnxYsT6hQ4iVAS5Hh1CfeNAygJY+cbHNpx5xCYpQl+iw6umVG8AbfA1/fd8mFMMvGEYgdIORDkZs3yc+iPWxL8aEYKj12fBBaZgRfFxsc1346DbXgw/GcB8U+UYNzMN3A/3k678YK3wYxUdYiX4Fbd4QhsMGv0+JCzOBet8moNfFQai2BnYL/KXEbBR94gyI1qr12/cLp3t76KhX7oqjghIilyhb7BiKrySS1HdJ4FRUBYhkwVffIX2f9IMaa0fIW+DvqEPiBg3q/EGTvwAb+9oZACiE3hDpeCWXRwWbn1tsAuzeDnmYIKqihIC/kAAZKiiAWTgVCY6PPDgBAaJ8hwToQjfwAelaKkUF7JLHWQW5xlAk2Vo1cAtXUfmoUpBmsU7DCvkoDc8nFdKFJs6kqquFxGWXH5lEppE+vRjFbMYhd1ycoR8QcsFi3Ef1CPM0UaTcfBxLq9Op2oivw1hEgiW/AO9lVvTjejXjOdGPKRqplWB3UuZ0dDCo53T20MiEaZpHZ1sJfkI2/+M59Pb9rtf3htWPRbbmBQ3cLu2D65U/EBBlyNDDfdgQttVz167/FLPhF2dcKTBXErbhsoR3kYuo/vyDnKRxVAGZpSJRJyxT61yn7sBfjiYcJ4uYa+B05gKZbXg+SzdnJgcJjK6P24xXkM4WJ2mc5gSWm+P7IFCUM1NqGZxYJYWb3MIUM11oEdRbidCho2V0OTOllsIjgaHV2EpLQ6ldjiSkjqawjuuOp30CM+V1ItRpWVEiPC+MLeQN4yWKTZX0gVSOelecbXTO84THxm8S4HKdrqXx29001pJ/YGp5nEQ/8QWsuQ8Mg54CzVclIx6KFdBs2gs3YUjszzBT0xrxRc5LA80iNLjqtzjzLOcskkvOFdZrTl0X09aUsx9BehpzvZ+tBMSEDpC3YhvtSLAQsmIuIxnmIkOPJTOIzOd855WRkKiiakBpQESCbSHGGUBXIbJwbFyrZZrrow9T2IJLOOYrOOcQpd1Te3jF0rE+QSEdJJ19gmBxhUVT4Rd49NG2glTljrZ2RrvyacLibMkqWGK2xSBRIVJEoPfzueSKgP0dCn22mMPXXr9LI97oxBJgTVtpwLK76HAZ58b1jFVUn5G3es1WGBXMSBzL7pqxdPlHRb9GA1dxIxya1hahBZB3QDp5SkjpowHqFoDSB4AzTFcrlkQk0enKL4BZmlu7nZLZ6KiEUQTXQLZW5QtmlBUqWtxcGGUl+OwOcsrN9W527C9wd9sgFlzLDm0h3HDYUmcV6dUSQmrCpTTXEtpa2zz8V0QRT5oqTSdpQnDIcsUlBNpi51ZQ/4AsEb7JEOwD/P3k8f39K7m0V7i08yAxYg+nnhinPmk59ewgp57dy6l9anIK3/1Cvw4O8moToegTePXky8NOm6HwIIbCezFU5o/I1MwUh4Yez9GwdyjdjyXPLISnjzxNjt7nkN4s0oTFp3gJfu1q2hxDYtriK7qdL3OnXrARtdkqT8wHhrR9F1MroO2Y6JgFY2sqcNO9mQzndjL470mDCrHKYhEKdQ/Ii+WxvRZyfgDk/DlBbhdrxXj/M4P85DYvnx8A+fw5Qd7wcu+ZQT65zcsXB0C+eE6QN7ycPjbgPyR4RAcIrmDNDdZRC+e3t+PczEnf3gvo1k3MvbF2H/T0uR+SC4PkvIXk9BAkp88MSe+rHTvP+ALbr9/h3rZQXN6Ooiy0lTAtn/KU5Fy/9l2NYYfeGm7d6vjkH7z8NWAxnrgqJ4UzWuti7pzzDO9O3ycfc5ZI/EcHI7K77TqQtclNrInDWBP3Z+3Lz1XOrdcFbU7LGFOy2v+n0jpt0frpMFo/PcPFSAva/mmcTW86QZ8fxtn54y/FWzjTQXO32oL/s8UGZ+0cZoYXZgV8H8H/9An8X7+vU/Wf3y54+Cf7y1R07yY7im921EDfB1pPX5zWCnnKPvJfr6Kiv9eUPBfz3bfgkCa8q33jbVsl6vb1VxIvj8m/yeQV6RGnNoNamDaO0HEGe6DstFGe7Yuy8xTXfK07oq+J9ASQPqmQvgNKtw1l+BcZkz9NA6h6uXkZvnoFD0XLb+EyTSXfvd823pc8kLuIcJ/kNu9RmThuMHHNfWLh9IF/lale/YtJ/X8Exf+UvvkbUEsHCHW8AjipCAAAJSsAAFBLAQIUABQACAgIAFqPMVGoGbe58wQAAOAlAAAXAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9kZWZhdWx0czJkLnhtbFBLAQIUABQACAgIAFqPMVFsPGBlUAMAAAYRAAAXAAAAAAAAAAAAAAAAADgFAABnZW9nZWJyYV9kZWZhdWx0czNkLnhtbFBLAQIUABQACAgIAFqPMVHWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAM0IAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAWo8xUXW8AjipCAAAJSsAAAwAAAAAAAAAAAAAAAAAKgkAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEAAgBAAANEgAAAAA=" framepossible="true" showreseticon="false" showanimationbutton="true" enablerightclick="false" errordialogsactive="true" enablelabeldrags="false" showmenubar="false" showtoolbar="false" showtoolbarhelp="false" showalgebrainput="false" />
<!DOCTYPE html>
<html>
<head>
<meta name=viewport content="width=device-width,initial-scale=1">
<meta charset="utf-8"/>
<script src="https://cdn.geogebra.org/apps/deployggb.js"></script>
 
</head>
<body>
<div id="ggbApplet"></div>
 
<script>
var parameters = {
"id": "ggbApplet",
"width":2158,
"height":962,
"showMenuBar":true,
"showAlgebraInput":true,
"showToolBar":true,
"customToolBar":"0 73 62 | 1 501 67 , 5 19 , 72 75 76 | 2 15 45 , 18 65 , 7 37 | 4 3 8 9 , 13 44 , 58 , 47 | 16 51 64 , 70 | 10 34 53 11 , 24  20 22 , 21 23 | 55 56 57 , 12 | 36 46 , 38 49  50 , 71  14  68 | 30 29 54 32 31 33 | 25 17 26 60 52 61 | 40 41 42 , 27 28 35 , 6",
"showToolBarHelp":true,
"showResetIcon":false,
"enableLabelDrags":false,
"enableShiftDragZoom":true,
"enableRightClick":false,
"errorDialogsActive":false,
"useBrowserForJS":false,
"allowStyleBar":false,
"preventFocus":false,
"showZoomButtons":true,
"capturingThreshold":3,
// add code here to run when the applet starts
"appletOnLoad":function(api){ /* api.evalCommand('Segment((1,2),(3,4))');*/ },
"showFullscreenButton":true,
"scale":1,
"disableAutoScale":false,
"allowUpscale":false,
"clickToLoad":false,
"appName":"classic",
"showSuggestionButtons":true,
"buttonRounding":0.7,
"buttonShadows":false,
"language":"de",
// use this instead of ggbBase64 to load a material from geogebra.org
// "material_id":"RHYH3UQ8",
// use this instead of ggbBase64 to load a .ggb file
// "filename":"myfile.ggb",
"ggbBase64":"UEsDBBQACAgIAL2OMVEAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztmk9T4zYUwM/dT+HRqT2QSI6dBAazw+5Mp8ywLFOYTq+KrTgqiuRaMjh8+sqSYzubmAUHSNJdDshP1t/fe3p6knP6MZ8z556kkgoeANSDwCE8FBHlcQAyNT0ag49nH05jImIySbEzFekcqwD4RcmqnpZ6Q+gVeThJAhAyLCUNgZMwrIoqARDTKaOcAMfJJT3h4grPiUxwSG7CGZnjSxFiZdqaKZWc9PsPDw+9Za89kcZ93bDs5zLqx7Hq6RQ4euhcBqB8ONHtrtR+GJh6LoSo//eXS9vPEeVSYR7qgehpRWSKM6akfiSMzAlXjlokJACJoFwBh+EJYQG4LiTn12lKyG/AKStpWhCcffjlVM7EgyMm/5BQ56k0I1U9I/SLMvr1Z8FE6qQBGI2AE9tkEgDX9zU0lsxwAKAtzPCCpM49ZlUOzpQITX2TO8VMkmVZ3dMXERH7xivLczo3OB2piNYH7CHgyISQSI8alHNERj0Lo+lGi6EQaSSdPABX+Ao4izJ9tKkpYujc0MeyU7+ZqxaMNMZ+2i/BPg9xRBLCI11ohTPqxHk4NpyLZGKTw8bsvTXm4YFg3gFk9HLKX3mTrduJLXJ9A9ek7+UsDsJVXPA/SazH3GQ8+Mn4VRmvWrDXiS40bOGBkjVFLENZ/NeRjZgnjOSvCN5GRSXESyNU0N1uEUYTOtzRtgc7Qy+AWHxqRsM7TqQs2NbtFg9/0EjvX6Y/oaNIqnRLaDS2LZB/+YrSqNYZ1WWeVsQ046EyLqWE+zlL75vaGHhwF/qo2+y8AlqUsS3pdpaSxIVUcblZyrVpdwvqfnTTFpliRc8XXOnDFzEGK9cmd0dIcqub+spvU8xlcQJbtaV2zaV48ZTW/EPQ2o+ms6Xn4vc4rTTR1Fq3yKh17+65/q5V9wI33gSxfRCzV+b7QtvcyoiG3Za+C73N9HqjPTaiez09UWP4qxTrUOBnYNbFE26Ip3GqiKSYf+90whZxY01fL+VKIyOrke3H2K7TBq2VA6Q/MGr10ZqJI2j/kHcMERoid38tviC8chS5rjJqxujNGR/YumnnGQpeXIAvjxJWqkh6B+E/3u8koc9sNCbcul3pODk0xRbQVH6E5aeJHBl5gczbR2SzTX098JTmzrmtcW4Lnrs2GdjEs4lfAep2UDSqTbTjagTK3+wPXrfTzSG5kv+l0t8hWOfZnKQN13C1lCvj8a1z0O1lZEW1z3AFbXbSbhWS0Uib0JxqJR1p7c1xbrSIJ1KwTJGbMCWE19/nrBk/0EjNiuhO9z2leWEutk1nJlL6KLiqaDjFKjhn5kveym3GJvNxnwpeV4x1O/eMeczq1XhupVoD9rreFPr2Jm+TYpoMYYlw2HPHAzT2B3CERsf+ePhMpGhcI7Uvnk103T4QfAULedE6dzetc5yG9TXpAG52PLAH0cjzB+6x66PjY08/+K9/Gvy9yqhPNvt4q2csYK3om13YMRFmsr6GtlJFaPw9Qi2h8d7GKzjLKaM4XWxn7C9CrEheRwy3Rmj8lGAPA8L2qWjscT20Cys1vtfbyUyppsjxXFewnVD+CYd3cSoyHq3vQ68ydbRr22qHNhGCEVx7ok9LufGVeG3nbwNUbra7PC2EMxLeTUS+slk97WSorFfApREaX283rIDnz3J9ozvauSl0uZ9r+6i4MRRpku43fsvUX/5w6uw/UEsHCKgZt7nzBAAA4CUAAFBLAwQUAAgICAC9jjFRAAAAAAAAAAAAAAAAFwAAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1s7ZjdbtMwFMev4Sks39PYaZIt0zJUwQVIMA1xw62XnLaGxA62uzZ7Nd6BZ+LEzroUVsSqbRKIXuz46xzbv/+JE+/05aapyRUYK7UqKJ8wSkCVupJqUdCVm784pi/Pnp8uQC/g0ggy16YRrqBpP3Lrh7VJxpK+TbRtQctaWCtLStpauN6loHo+r6UCSsjGyhOlz0UDthUlfCyX0Ih3uhTOx1o6155E0Xq9ntzMOtFmEWFgG21sFS0WboKWEly6sgUdCicYd8d7PfV+MWM8+vT+XZjnhVTWCVXiQnBbFczFqnYWi1BDA8oR17WAG9BKllOcoxaXUBf0rXK4Vyj7JZJyZa7Qf3Au6JSnjJ49f3Zql3pN9OVnHFdQZ1aw9feVqB+D3a90rQ0xBY05JYiZM7SXaPMY+dXtUhSUTTgLP57kjPOMx8G/Fh0YciUwKAstYuV06UP61rmoLdyMxcnf6wpCTzKMV7LxrIl1gGLh5LYFqHwpbJ955TqfBON4KOBH19VA3FKWXxRYxJ+OnPrCG1lV0OdS8AG5AHWFRLSxqD3zs3TMD79mQ8ptuK933Pde89Ds/XGpRm7ILHjMwsBZHMw0mCSYdIsEvqqwTtv/LWgrDKYbBir7/tNoEPsX2cVG2unrrWqzoTpSmk0PUpp5oZmXmd2K/FiSYvY8rqj7+ZKhDLjr799+j9s/SKUwDqwUavS4veo7fiaf/Q3kH5P7fpAYX8GI34Wv7/DDY/AgfnnuAcY89wi93Z5R6UNhLLU2lSWbgp6LczwIBns92HWwfuhc9C+nYba9p+RdcNmBcHXdLaEyWt3yHTXdIp4OiA95ou4rC0+nXpeU/5zZk2RAkub4Ss6SB9Po0FS/F9mZKZeygQrELloU9qnQxjy8lpMjj7Y3/wbbiw5PZlntcn26lPVHBy4+D1zjfyZnL4y0zS5V/oRUs3BAB6p59ldSVeC2+zzvy+NTNf1/qt6H5deVqPyX2LDVDzf1MVN+4IVl/9GYJXn/O8p4esyTmD8UoMe4dNx55egbw72iC+Y63ga87y2EzLJgjoI5Dibfe0ORTVvLUrrfS2tXZo5X5rs+mYeuXZWTw1RGvzs/midHf5r2t4Gf5LOZ/+mXXTS68Uc3/144+wFQSwcIbDxgZVADAAAGEQAAUEsDBBQACAgIAL2OMVEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAL2OMVEAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vpdc9u2En1OfwWGD51kakkEP6VcKR3LUT9mnCZTp51Opy8QCUmIKZIlIFtq0//eXYCkRNN2JNtxfOuxDBJcLLDnHCwByMNv18uEXPBCiiwdWbRrW4SnURaLdD6yVmrW6VvfvvpqOOfZnE8LRmZZsWRqZPloWbeDu25ge1jH8nxkRQmTUkQWyROmsMnIymazRKTcIiKGfvqTyXcnY9qhXuh3vNfepHM86dudsR06AXW/o/1gYhGyluJlmv3EllzmLOJn0YIv2WkWMaV7XSiVv+z1Li8vu9X4ulkx78EQZG8t4958Pu1CaREIMpUjq7x4CX4brS9d3c6xbdr77c2p6acjUqlYGsGQEYCVePXVs+GlSOPsklyKWC1GlkP9vkUWXMwXAMkgcCzSQ6sccMl5pMQFl9B251ZHr5a5pc1Yis+fmSuS1IFZJBYXIubFyLK7duhRzwkdL/R86nou9JgVgqeqNKZlp73K3fBC8EvjF690l55FVJYlU4YuycePxLEdmxxhQU3hmFrb3NquKRxTeKbwjY1nWnrG1DM2nrHxXJCFkGKa8JE1Y4lExtNZARzW91JtEq6HUlZsI6dHEI4Uf4Ex9GcRgzeM+cg+8mz9MeHuxEZ3elTF6sAOq+5oQPv79efcK0K3EZ9i05F1fPr9ZPzzcbN354be+ztMUqTrI6HIky5cggxRzRQWXnkbmNtQF9Qua/umdoC3wf1oq1H0d0jz7SP9qz9t2h6oS9feu0v3IOqMlu7XY9CYeA8TsNffH2On/+h9evYgfBCYD9BSaF+b30xJy/JhyB/sT75PneawCCU+zFif0AEkywCno0OoTzyo6UNNSFys86lHXIIm1CU6r3p65gbwBB/DX9+3CcX8C4ERyN0QpIMp2/eJD2YhtsWcEAy0Pxs+aA0jgo+Lda4LH13nevDBJO6DI9+4gXH4bqCvfP0Xc4UPvfgIK9GPoM4bQHdY4YeUuDASuA9tAn5d7ITqaOB1gb+UmDdFSJw+0V61f/t+6XRvhQ571WtxWFJC5AJty1eG4kuJJIUuCZyaqgCRLPkKHRL6JAx2WDtC3gJ/Sx0S129Q5/eb/AVYGWoxAFAIvSHS8Souj0o2P7bYBNi9LfIwQHRFCQG9kAAZKimAUTg1CY6PPDgBAaJ8hwQooRv4gPVaJkUN7IIneQ25xlCk+Uo1cIuWcXWpMrBmiV6HlfZxFp2Pa6RLT5xJtesWVi7bBZJZyTTWT8+GCZtyWDzOz1AHhFywBN+juodZlipSJQzH0u70Wm3IV1EiYsHSX4H3aln002o55QXRlxkGqZ1gc1It6mi/v7uoswfGJsqyIj7bSNAJWf/OC2jt+11YlA3qH4tszAMauF0agvSqH0iIMmKocB9eCJv6umvv/pSj4RdnXCkIVxK25rKCd16IePf6RznOkrgGMs9Eqk5YrlaFXrsDfwWGcJzOE66B0ysXWNpG59NsfWbWIIHx9X6T8xrS6fwkS7KCwHRzfB8MynJqSm2DA6ut8CU3N8VUF9oE/dYmdOBoG11OTamtcE9gaDWx0ipQalc9CamzKczjXeFpTeBSeZUKdVrdKBGdl8GW9obxCsWmS/pALoe9K2IbnvMi5YnRTQpcrrKVNLrdDmMl+TumFsdp/DOfw5x7xzDpKfB81TLmkVgCzaa+lAlDYn+BkZramM8LXgVoJqHBVT/FkecFZ7FccK7wfkfUu2Y6mmr0Q1ieJly/z5YCckIHyFuytRYSTIS8HMtQRoXIUbFkCpn5nG9VGQuJLuoKtAZEJMQWYZ4BdBUiC/vGlVpkhd77MIU1OIUTvoSNDlFanlrhNUvHeguFdJBs+gGSxRUWt+jB41qHtlahXYuZsCRfsBqPhG0wO9RQlKnn7WwmuSIQeIdCmw0u3ncev8li3mjEUqBLh2dQsruotJxzozkTDtW7442erDU4JSUS+7K7pi9d/lXzrmHA6dvIg6a2xWSJ4CewHH8RLOmjIemWSNIHwDHKlkuWxiTVC5RfAayssLbvRmajNAmjiKqBbKWqB8w4K120SLkwzirU2SdY2Qn1JlrsOwjcNlAF19JCW9A2JFr5rJO6WkD2TLmU5ghCh2mbix9EHPO06dI0kibbRqxQXEJOLV/SCu7fIT2Er3NE+QCFnzyiwj+TiL1SxM6DpIM9ZDw2Mj5pyXh6kIynd5OxT82CwXfvqOTgIB2bZES/gI7Hd88wbWqig6iJ7kZNtSpEiqamODTLeI7Gu0PpfvR4RvpfPsk0yXlbwKJlnqUsOcWz7Wvnz/oYlpstouLbiTJH5SUNcZumah+8b/bad/q0cteWgo6ZIrbmAN+oN7Pg3M4C/zNtcCCWeSIioe6BdTkhNtdizQ/Amj8JrO1ydhi9PzGsT27T9ewArGdPAuuGrr0nhvX4Nl3PD8B6/iSwbuiaPjbSP6a4uYbYr4DMDchxC+DXtwPcXGK+vhvCrcOTe4PsPui+cT8I5wbCWQvCySEQTp4KhN5n2zCe8TnWX//6et2Cb3E7fLL0VuGz+CLbHOf6ae5q8Dr01pTq1vsf/+CZrpFKcMtUyxI2Wa3Ts3POczzgfJu+L1gq8d8RjMn2SOpAusY30SUOo0vcg667b4ycW3f4bTKrdFLRGf5X+Zy0+PxwGJ8fntL0oyVf/zWyJjftfc8PI+v8ESffLWTp/LidX8H/2fSCXXIBI8PDrRK39yA8vXf++s9Vpv73xwWP/mb/mBvdukmL4ustJ9D2vjPozqtUIU/Ze/7bVTj0F4ySF2K2/Toa1gBvdr56tq0Kbvv6U4Tnx+QbMn5BesTZGcFORjYK6Dj9PeB12vBO94XXedSzuNZ5zueEeAwQn9QQfwJDt41h9A8Zkb9NBbh6vn4evXgBF2XNH9EiyyTfPt80nlcEkE8x4D7ukdujUnDcoOCaQ79S5oF/laLe7neC+iv88v85X/0LUEsHCGG2TlmaCAAAoSoAAFBLAQIUABQACAgIAL2OMVGoGbe58wQAAOAlAAAXAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9kZWZhdWx0czJkLnhtbFBLAQIUABQACAgIAL2OMVFsPGBlUAMAAAYRAAAXAAAAAAAAAAAAAAAAADgFAABnZW9nZWJyYV9kZWZhdWx0czNkLnhtbFBLAQIUABQACAgIAL2OMVHWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAM0IAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAvY4xUWG2TlmaCAAAoSoAAAwAAAAAAAAAAAAAAAAAKgkAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEAAgBAAD+EQAAAAA=",
};
// is3D=is 3D applet using 3D view, AV=Algebra View, SV=Spreadsheet View, CV=CAS View, EV2=Graphics View 2, CP=Construction Protocol, PC=Probability Calculator DA=Data Analysis, FI=Function Inspector, macro=Macros
var views = {'is3D': 0,'AV': 0,'SV': 0,'CV': 0,'EV2': 0,'CP': 0,'PC': 0,'DA': 0,'FI': 0,'macro': 0};
var applet = new GGBApplet(parameters, '5.0', views);
window.onload = function() {applet.inject('ggbApplet')};
applet.setPreviewImage('','https://www.geogebra.org/images/GeoGebra_loading.png','https://www.geogebra.org/images/applet_play.png');
</script>
</body>
</html>
 
 
<br>
<br>
{{Fortsetzung|weiter=Übung|weiterlink=WHG_Q1_Vektorrechnung/WHG_Q1_Kurze Übungen zur Vektoraddition|vorher=Einstieg|vorherlink=WHG_Q1_Vektorrechnung/WHG_Q1_Einstieg Rechnen mit Vektoren}}
{{Fortsetzung|weiter=Übung|weiterlink=WHG_Q1_Vektorrechnung/WHG_Q1_Kurze Übungen zur Vektoraddition|vorher=Einstieg|vorherlink=WHG_Q1_Vektorrechnung/WHG_Q1_Einstieg Rechnen mit Vektoren}}

Version vom 17. September 2020, 15:59 Uhr

Aufgabe
  • Verändern Sie in beiden Konstruktionen die Anfangs- und Endpunkte der Vektoren und .
  • Geben Sie mit Hilfe der Darstellungen eine Rechenvorschrift für die Addition zweier Vektoren an.
  • Geben Sie auch eine Rechenvorschrift für die Addition zweier Vektoren des Raumes an (Vektoren mit drei Einträgen).


GeoGebra
GeoGebra



GeoGebra