Einführung in die Differentialrechnung: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Wechseln zu: Navigation, Suche
Main>Roland Weber
(Barringer-Krater)
Main>Roland Weber
(Verallgemeinerung)
Zeile 209: Zeile 209:
 
<br><br>
 
<br><br>
  
{{Aufgaben-M|6|
+
{{Aufgaben-M|9|
 
Auf dem Arbeitsblatt, das am Pult liegt, ist der Graph der Funktion f mit <math> f(x)=x^2</math> gezeichnet.
 
Auf dem Arbeitsblatt, das am Pult liegt, ist der Graph der Funktion f mit <math> f(x)=x^2</math> gezeichnet.
 
# Zeichnen Sie die Sekante durch die Punkte A(1<nowiki>|</nowiki>f(1)) und B(2<nowiki>|</nowiki>f(2)) und bestimmen Sie aus der Zeichnung ihre Steigung.
 
# Zeichnen Sie die Sekante durch die Punkte A(1<nowiki>|</nowiki>f(1)) und B(2<nowiki>|</nowiki>f(2)) und bestimmen Sie aus der Zeichnung ihre Steigung.
Zeile 225: Zeile 225:
 
<br><br>
 
<br><br>
  
{{Aufgaben-M|7|  
+
{{Aufgaben-M|10|  
 
Wir betrachten weiterhin die Funktion f mit <math>f(x)=x^2</math>.
 
Wir betrachten weiterhin die Funktion f mit <math>f(x)=x^2</math>.
 
# Bestimmen Sie  rechnerisch für die Werte <math>x_0=1</math> und <math>x_1=2</math> mit Hilfe der Formel die Steigung der Sekante <math>m=\frac{f(x_1)-f(x_0}{x_1-x_0}</math> durch die Punkte A(1<nowiki>|</nowiki>f(1)) und B(2<nowiki>|</nowiki>f(2)). Vergleichen Sie mit dem Ergebnis aus der vorherigen Aufgabe.
 
# Bestimmen Sie  rechnerisch für die Werte <math>x_0=1</math> und <math>x_1=2</math> mit Hilfe der Formel die Steigung der Sekante <math>m=\frac{f(x_1)-f(x_0}{x_1-x_0}</math> durch die Punkte A(1<nowiki>|</nowiki>f(1)) und B(2<nowiki>|</nowiki>f(2)). Vergleichen Sie mit dem Ergebnis aus der vorherigen Aufgabe.
Zeile 248: Zeile 248:
 
Anstatt x<sub>1</sub> immer mehr x<sub>0</sub> anzunähern, kann man auch die Differenz <math>h=\Delta x=x_1-x_0</math> klein werden lassen. Es ist dann <math> x_1=x_0+h</math>.
 
Anstatt x<sub>1</sub> immer mehr x<sub>0</sub> anzunähern, kann man auch die Differenz <math>h=\Delta x=x_1-x_0</math> klein werden lassen. Es ist dann <math> x_1=x_0+h</math>.
  
{{Aufgaben-M|5|
+
{{Aufgaben-M|11|
 
# Überlegen Sie, wo in der folgenden Zeichnung die Größen h, <math>x_0+h</math>, <math>f(x_0+h)</math>,  
 
# Überlegen Sie, wo in der folgenden Zeichnung die Größen h, <math>x_0+h</math>, <math>f(x_0+h)</math>,  
 
<math>f(x_0+h)-f(x_0)</math> zu finden sind.
 
<math>f(x_0+h)-f(x_0)</math> zu finden sind.
Zeile 272: Zeile 272:
 
<br><br>
 
<br><br>
  
{{Aufgaben-M|6|
+
{{Aufgaben-M|12|
 
Gegeben ist wieder die Funktion f mit <math> f(x)=x^2</math>.
 
Gegeben ist wieder die Funktion f mit <math> f(x)=x^2</math>.
  
Zeile 302: Zeile 302:
 
<br>
 
<br>
 
{{Differenzieren|Übungen für Fortgeschrittene}}
 
{{Differenzieren|Übungen für Fortgeschrittene}}
{{Aufgaben-M|7|
+
{{Aufgaben-M|13|
 
# Bestimmen Sie wie in der vorherigen Aufgabe  einen Näherungswert für die Steigung der Tangenten an der Graphen der Funktion f mit <math>f(x)=x^2</math> im Punkt A(3<nowiki>|</nowiki> 9).
 
# Bestimmen Sie wie in der vorherigen Aufgabe  einen Näherungswert für die Steigung der Tangenten an der Graphen der Funktion f mit <math>f(x)=x^2</math> im Punkt A(3<nowiki>|</nowiki> 9).
 
#  Bestimmen Sie wie in der vorherigen Aufgabe  einen Näherungswert für die Steigung der Tangenten an der Graphen der Funktion f mit <math>f(x)=3 x^2+2</math> im Punkt A(2<nowiki>|</nowiki> f(2)).
 
#  Bestimmen Sie wie in der vorherigen Aufgabe  einen Näherungswert für die Steigung der Tangenten an der Graphen der Funktion f mit <math>f(x)=3 x^2+2</math> im Punkt A(2<nowiki>|</nowiki> f(2)).

Version vom 1. November 2013, 23:57 Uhr

Achtung: Baustelle: Lernpfad zur Einführung in die Differentialrechnung

Einstieg

Im bisherigen Mathematikunterricht wurden bereits vielfach Funktionen und deren Wertetabellen und Graphen betrachtet. Allerdings wurde das Änderungsverhalten von Funktionen bisher nur eingeschränkt untersucht, obwohl es eine essentielle Eigenschaft von Funktionen ist. Am Ende des 17. Jahrhunderts gingen Gottfried Wilhelm Leibniz und Isaac Newton der mathematischen Bestimmung des Änderungsverhaltens von Funktionen genauer nach und entwickelten Ideen, auf deren Grundlage die Differentialrechnung entwickelt wurde. Die Differentialrechnung war ein wichtiger Baustein in der Weiterentwicklung der Mathematik und den Naturwissenschaften und ist heute eine unverzichtbare Methode in der Mathematik.

Im folgenden Lernpfad lernen Sie die Ideen von Leibniz und Newton kennen. Zur Dokumentation Ihres Lernprozesses sollen Sie die Aufgaben des Lernpfades in einer Mappe oder einem Heft nachvollziehbar aufschreiben. Ihre Aufzeichnungen werden am Ende der Reihe eingesammelt.

Einstiegsaufgabe 1 - Blumenvase

Unterschiedliche Gefäßformen lassen sich durch ihren Füllgraphen beschreiben. Dieser ergibt sich, wenn in ein Gefäß eine Flüssigkeit mit gleichmäßigem Zufluss einfließt. Die entstehende Zuordnung Zeit(t) -> Höhe(h) kann in ein Koordinatensystem übertragen werden und stellt die Zunahme des Wasserspiegels in Abhängigkeit von der Zeit dar.

Aufgabe 1.1

Skizziert zunächst für die Gefäße einen möglichen Verlauf des Füllgraphen in ein Koordinatensystem. Vergleicht eure Ergebnisse mit einer anderen Zweiergruppe und begründet eure Skizze.

Experiment

Mit dem folgenden Experiment werdet ihr eure Vermutung aus der ersten Aufgabe überprüfen. Dazu sollt ihr gleichmäßig Wasser in ein Gefäß füllen. Mit einer Stoppuhr wird die Zeit gemessen, wie lange der Wasserspiegel braucht um auf 0.5 cm, 1 cm, 1.5 cm, 2cm usw. zu steigen. Die Messdaten für die Zeit tragt ihr danach in die untenstehende GeoGebra-Tabelle ein.

Versuchsaufbau

Im Bild seht ihr den Versuchsaufbau. Bei der Versuchsdurchführung ist es zum einen besonders wichtig, dass der Wasserzufluss immer gleichmäßig ist. Der obere Teil des Trichters muss daher immer mit Wasser gefüllt sein, sodass der Zufluss konstant bleibt. Zum anderen muss der „Zeitmesser“ genau beobachten, wann der Wasserspiegel die markierten Höhen erreicht, damit die Messung so exakt wie möglich ist.

Achtung: Bei manchen Stoppuhren lassen sich Zwischenzeiten stoppen. Diese liefern für unseren Versuch die genaueren Ergebnisse, müssen aber zunächst noch addiert werden.

LP Messbecher.jpg

Wenn alle Messdaten in der Tabelle eingetragen sind, könnt ihr euch die dazugehörigen Punkte im Koordinatensystem anzeigen lassen. Markiere als erstes alle Messwerte (Zeit und Höhe). Durch einen Rechtsklick über den markierten Werten kann im erscheinenden Kontextmenü Erzeuge - Liste von Punkten ausgewählt, sodass die zu den Messwerten gehörigen Punkte im Koordinatensystem erscheinen.

GeoGebra Tabelle

<popup name="GeoGebra Tabelle">

GeoGebra

</popup>

Aufgabe 1.2

Vergleicht die Versuchsdaten mit euren Skizzen aus Aufgabe 1 und beschreibt den Verlauf des Füllgraphen. Inwiefern kann man die Form des Gefäßes am Füllgraphen ablesen?

Aufgabe 1.3

Um weitere Erkenntnisse über den Füllvorgang zu erhalten soll nun die Steiggeschwindigkeit des Wasserspiegels untersucht werden.

Ist es möglich, die Steiggeschwindigkeit zum Zeitpunkt t = 5s zu ermitteln? Begründet eure Antwort kurz.

Einstiegsaufgabe 2 - Barringer-Krater

Barringer Meteor Crater, Arizona.jpg


In Arizona gibt es einen Einschlagskrater eines Meteoriten, den sogenannten Barringer-Krater.

Der Krater hat einen Durchmesser von etwa 1200 Meter und eine Tiefe von 180 Meter. An der flachsten Stelle kann der Kraterrand durch die folgende Funktion beschrieben werden: für

LP Krater.png

Im Krater befindet sich ein Fahrzeug, das eine Steigung von bis zu 115% bewältigen kann. Kann das Fahrzeug den Kraterrand erreichen und aus dem Krater herausfahren?

Von der mittleren zur momentanen Änderungsrate

Blumenvase

VaseFuellvorgang.jpg

In der Einstiegsaufgabe haben Sie in Gefäßen gleichmäßig Wasser eingelassen und die Höhe des Wasserstandes gemessen. Betrachten wir nun die abgebildete Vase, in die ebenfalls gleichmäßig Wasser eingelassen wird. Die Tabelle stellt dar, wie sich die Wasserhöhe (hier gemessen vom Tischboden) in der Vase beim Einfüllvorgang im Zeitverlauf verändert. Im Gegensatz zum Vorgehen zur Einstiegsaufgabe wurde nun alle drei Sekunden die Höhe des Wasserstandes gemessen.

Zeit (Sekunden) Höhe (cm)
0 0,51
3 1,33
6 2,74
9 4,91
12 8,00
15 12,17
18 17,58

Die mittlere Änderungsrate gibt an, wie viel Zentimeter pro Sekunde die Wasserhöhe in einem Zeitabschnitt im Schnitt zunimmt.

Bsp.
In den drei Sekunden zwischen Sekunde 6 und 9 steigt das Wasser um 4,91 cm - 2,74 cm = 2,17 cm. Daher nimmt das Wasser pro Sekunde um 2,17 cm : 3 s = 0,72 cm/s zu. Die mittlere Änderungsrate im Zeitabschnitt von Sekunde 6 und Sekunde 9 beträgt daher 0,72 cm pro Sekunde (abgekürzte Schreibweise: 0,72 cm/s)

Vorlage:Aufgaben-M

<popup name="Lösung"> a) In den ersten drei Sekunden steigt die Wasserhöhe um 1,33 cm - 0,51 cm = 0,82 cm. Pro Sekunde steigt es daher um 0,82 cm : 3 s = 0,273 cm/s.
b) In den drei Sekunden von Sekunde 3 auf Sekunde 6 nimmt die Wasserhöhe um 2,74 cm - 1,33 cm = 1,41 cm zu. Die mittlere Änderungsrate ist daher 1,41 cm : 3 s = 0,47 cm/s.
c) Zwischen Sekunde 12 und 15 liegen wiederum 3 Sekunden. In diesem Zeitraum steigt das Wasser um 12,17 cm - 8 cm = 4,17 cm. Pro Sekunde nimmt das Wasser in diesem Zeitraum daher um 4,17 cm : 3 s = 1,39 cm/s zu.
d) Bei Sekunde 3 beträgt die Wasserhöhe 1,33 cm, während sie bei Sekunde 12 genau 8 cm beträgt. In diesen 9 Sekunden ist die Wasserhöhe also um 8 cm - 1,33 cm = 6,67 cm gesteigen. Die mittlere Änderungsrate zwischen Sekunde 3 und 12 beträgt daher 6,67 cm : 9 s = 0,741 cm/s.
e) Das Wasser nimmt in den ersten 18 Sekunden um 17,58 cm - 0,51 cm = 17,07 cm zu. Die mittlere Änderungsrate beträgt in diesem Zeitintervall daher 17,07 cm : 18 s = 0,948 cm/s.
</popup>



Möchte man nun für einen Zeitpunkt (z.B. Sekunde 12) eine Änderungsrate bestimmen, so spricht man von der momentanen Änderungsrate. Wie man die momentane Änderungsrate näherungsweise bestimmen kann, erfahren Sie in Aufgabe 2.

Vorlage:Aufgaben-M

<popup name="Applet">

GeoGebra

</popup>


<popup name="Lösung"> a) Bei Sekunde 12 beträgt die Wasserhöhe genau 8 cm, während das Wasser bei Sekunde 13 die Höhe 9,261 cm hat. In der einen Sekunden ist es also um 9,261 - 8 cm = 1,261 cm gestiegen. Die mittlere Änderungsrate in diesem Zeitabschnitt beträgt daher 1,261 cm/s.
b) 8,6151 cm - 8 cm = 0,6151 cm => 0,6151 cm : 0,5 s = 1,2302 cm/s
c) 1,206 cm/s
d) 1,204 cm/s
e) Der Wert scheint gegen 1,2 cm/s zu streben.
</popup>



Vorlage:Aufgaben-M <popup name="Lösung"> a)


=> Höhenzunahme:
=> mittlere Änderungsrate:
b) Der Zeitabschnitt für die mittlere Änderungsrate müsste immer kleiner gewählt werden, z.B. zwischen Sekunde 12 und 12,00001 usw.
</popup>

Von der Sekanten- zur Tangentensteigung

Barringer-Krater

Um entscheiden zu können, ob das Raumfahrzeug aus dem Krater kommt, benötigen wir die Steigung des Kraters am Rand des Kraters.


Die durchschnittliche Steigung des Kraters zwischen zwei Punkten A(x0|k(x0)) und B(x1|k(x1)) kann mit berechnet werden. Dies enspricht der Steigung der Geraden, die durch die Punkte A und B geht. Eine solche Gerade, die den Graphen einer Funktion in zwei Punkten scheidet, nennt man Sekante.
ist dann die Sekantensteigung.

Vorlage:Aufgaben-M

<popup name="Applet">

GeoGebra

</popup>


<popup name="Lösung">

GeoGebra

</popup>


Vorlage:Aufgaben-M <popup name="Lösung">

Dieser Wert ist größer als 1,15. Das heißt, dass das Raumfahrzeug diese Steigung nicht mehr bewältigen kann. Es ist aber auch nur die durchschnittliche Steigung zwischen den Punkten A und B und nicht die Steigung im Punkt A, die für das Herauskommen des Fahrzeugs interssant ist. </popup>




Vorlage:Kasten blau

In der Graphik der Lösung der Aufgabe 3 kann man den Punkt B bewegen, indem man mit der Maus auf ihn zeigt und bei gedrückter linker Maustaste die Maus bewegt.

Vorlage:Aufgaben-M


Um zu entscheiden, ob das Fahrzeug aus dem Kater heraus kommt, muss ein genauer Wert für die Steigung der Tangenten an den Graphen im Punkt A betrachtet werden. Wenn die Steigung des Kraters im Punkt A(300|180) kleiner als 1,15 ist, kann das Raumfahrzeug den Krater verlassen.


Die weiteren Betrachtungen führen wir nun etwas allgemeiner auch für andere Funktionen durch, bevor wir die Steigung im Punkt A des Kraters tatsächlich berechnen.

Verallgemeinerung

Die Überlegungen, die wir für die Kraterfunktion angestellt haben, kann man auch für andere Funktionen durchführen.

Vorlage:Aufgaben-M

<popup name="Lösung">

  1. Die Steigung ist (ungefähr) 3.
  2. Die Steigung ist (ungefähr) 2,5.
  3. Die Steigung ist (ungefähr) 2.

</popup>




Vorlage:Aufgaben-M

<popup name="Lösung">

  1. Die Steigung ist .
  2. Wählt man , so ergibt sich .
  3. Wenn man x1 sehr dicht an 1 wählt, ist die Näherung recht genau.

Vorlage:Kasten blau </popup>




Da sich dadurch einige Rechungen später einfacher gestalten lassen, betrachten wir noch eine andere Schreibweise:

Anstatt x1 immer mehr x0 anzunähern, kann man auch die Differenz klein werden lassen. Es ist dann .

Vorlage:Aufgaben-M

GeoGebra



<popup name="Lösung">

GeoGebra



Vorlage:Untersuchen Vollziehen sie im Applet den Übergang von der Sekante zur Tangente nach. Wie ändert sich dabei h?


Sekantensteigung

Wenn man h= 0 setzt, würde man durch 0 dividieren, was ja nicht erlaubt ist. Daher können wir zur Bestimmung der Tangensteigung nicht einfach h gleich 0 setzen, sondern können nur einen Grenzwert betrachten, indem wir h immer kleiner werden lassen und so der 0 annähern. </popup>



Vorlage:Aufgaben-M
<popup name="Lösung"> Die Sekantensteigung ist . Dies muss für verschiedene n ausgerechnet werden. (Bei der Tabellenfunktion des Taschenrechners muss statt n als Variable x gewählt werden.)

n h x1 Sekantensteigung m
0 1 2 3
1 0,1 1,1 2,1
2 0,01 1,01 2,01
3 0,001 1,001 2,001
4 0,0001 1,0001 2,0001
5 0,00001 1,00001 2,00001

</popup>
Vorlage:Differenzieren Vorlage:Aufgaben-M


<popup name="Lösung">

  1. Die Steigugn ist 6.
  2. Die Steigung ist 14.

</popup>

Differenzenquotient

Vorlage:Aufgaben-M
Farm-Fresh plenumPlenumsphase

Differentialquotient

Vorlage:Kastendesign1


Der Differentialquotient f'(x0 )

  • beschreibt die momentane Änderungsrate der Funktion f an der Stelle x0 und entsteht im Rahmen eines Grenzprozesses, wenn man bei der durchschnittlichen Änderungsrate zwischen x0 und x1 den Wert x1 immer mehr dem Wert x0 annnährt,
  • beschreibt die Steigung der Tangenten an den Graphen der Funktion im Punkt A(x0|f(x0)) und entsteht, wenn man in Rahmen eines Grenzprozesses bei der Sekantensteigung zwischen den Punkten A(x0|f(x0)) und B(x1|f(x1)) den Punkt B(x1|f(x1)) immer mehr dem Punkt A(x0|f(x0)) annähert.



GeoGebra



Vorlage:Protokollieren Schreiben Sie die Definition des Differentialquotienten zusammen mit einer Skizze in Ihr Heft.



Vorlage:Aufgaben-M


Andere Schreibweise des Differentialquotienten:

Statt den Wert x1 immer mehr dem Wert x0 anzunähern, können wir auch jetzt wieder die Differenz der beiden Werte immer kleiner werden lassen.

Vorlage:Aufgaben-M <popup name="Lösung">


Dies nennt man die h-Schreibweise des Differentialquotienten.


GeoGebra



Vorlage:Untersuchen Vergleichen Sie die beiden Applets und untersuchen Sie die Veränderungen. </popup>



Mit Hilfe dieser h-Schreibweise des Differentialquotienten kann man die Ableitung f'(x0) berechnen.

Vorlage:Aufgaben-M

Ableitungsfunktion

Vorlage:Aufgaben-M




Vorlage:Mathematik

Vorlage:Aufgaben-M
<popup name="Applet">

GeoGebra

</popup>



Vorlage:Differenzieren Beispiel- und Vertiefungsaufgaben aus dem jeweiligen Lehrbuch zur Übung bzw. Hausaufgabe



Vorlage:Aufgaben-M

Diagnoseinstrument