Quadratische Funktionen erforschen/Die Parameter der Scheitelpunktform: Unterschied zwischen den Versionen
Main>Elena Jedtke (Alternative zu Quadratische Funktionen erkunden (Promotionsprojekt, bitte nicht löschen)) |
Main>Elena Jedtke K (Schützte „Quadratische Funktionen erforschen/Die Parameter der Scheitelpunktform“: Wichtig für die Projektorganisation ([Bearbeiten=Nur Administratoren erlauben] (unbeschränkt) [Verschieben=Nur Administratoren erlauben] (unbeschränkt))) |
(kein Unterschied)
|
Version vom 25. August 2017, 16:16 Uhr
In diesem Kapitel lernst du ganz unterschiedlich aussehende Parabeln kennen. Du wirst
Mit diesem Wissen kannst du dann selbst verschiedene Parabeln darstellen und beschreiben. |
Inhaltsverzeichnis
Quadratische Funktionen verändern
Wenn du dir die Bilder von der Seite Quadratische Funktionen im Alltag noch einmal anschaust, dann fällt auf, dass die abgebildeten Parabeln anders aussehen als die gerade kennengelernte Normalparabel. In der Natur und in Anwendungen wird der Funktionsterm der Normalparabel (y = x2) variiert und es entstehen die unterschiedlichsten Parabeln.
![]() |
|
![]() |
Eine Anwendung wird dir im folgenden Video gezeigt. Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) führt seit einigen Jahren Parabelflüge durch.
Vorlage:Video Video: Parabelflug des DLR
Durch unterschiedliche Parabelflüge wird die Schwerkraft, die auf dem Mond bzw. auf dem Mars herrscht, nachempfunden. In der Vorlage:Pdf-extern des DLR kannst du dir die zu fliegenden Parabeln auf Seite 16 (31) angucken.
Strecken, Stauchen und Spiegeln
In dem Applet ist die Normalparabel, die du auf der letzten Seite des Lernpfades kennengelernt hast, als Funktion '"`UNIQ--postMath-00000005-QINU`"' eingezeichnet. Du kannst den Schieberegler a betätigen und dadurch den Graph '"`UNIQ--postMath-00000006-QINU`"' verändern. Was passiert?
Verschiebung in x-Richtung
In dem Applet ist die Normalparabel, die du auf der letzten Seite des Lernpfades kennengelernt hast, eingezeichnet. Du kannst den Schieberegler d betätigen und dadurch den Graph verändern.
Verschiebung in y-Richtung
In dem Applet ist die Normalparabel, die du auf der letzten Seite des Lernpfades kennengelernt hast, eingezeichnet. Du kannst den Schieberegler e betätigen und dadurch den Graph verändern.
Zusammenfassung der wichtigsten Inhalte
Die auf dieser Seite gewonnen Erkenntnisse können kombiniert werden und ergeben quadratische Funktion der Form . Diese Form heißt Scheitelpunktform, da die Parameter d und e die Koordinaten des Scheitelpunktes der Parabel angeben.
Auf der nächsten Seite lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel Übungen.
Erstellt von: Elena Jedtke (Diskussion)