Quadratische Funktionen erforschen/Übungen: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Wechseln zu: Navigation, Suche
(Infobox + Kapitelüberschriften angepasst)
(Markierung: 2017-Quelltext-Bearbeitung)
(Übung 1 neu)
Zeile 11: Zeile 11:
 
}}
 
}}
  
 +
==Parameter==
 +
 +
===Die Paramter der Scheitelpunktform===
 +
 +
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 17) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
  
==Parameter==
+
Zeichne die Graphen der folgenden Funktionen:
  
 +
'''a)''' <math>y=2 \cdot x^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''b)''' <math>y=0,5 \cdot x^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''c)''' <math>y=-x^2</math>
  
=== Die Paramter der Scheitelpunktform===
+
'''d)''' <math>y=(x-2)^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''e)''' <math>y=(x+2)^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''f)''' <math>y=x^2+3</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''g)''' <math>y=x^2-3</math>
 +
{{Lösung versteckt|Gib für die Parameter <math>a, d</math> und <math>e</math> die Werte im Applet an, so dass g(x) einem der Funktionsterme (a)-(g) gleicht. Vergleiche zur Kontrolle die Parabel im Applet mit deiner gezeichneten Parabel.
  
 +
<iframe scrolling="no" title="Kontrolle: Parameter c und e" src="https://www.geogebra.org/material/iframe/id/cSvseGhd/width/700/height/500/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/true/ctl/false" width="700px" height="500px" style="border:0px;"> </iframe>|Lösung anzeigen|Lösung verbergen}}|Arbeitsmethode}}
  
 
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 16) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 16) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
Zeile 331: Zeile 339:
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
! Hintergrundbild!! Lösungsvorschlag !! Parameter a !! Parameter d !! Parameter e
+
!Hintergrundbild!!Lösungsvorschlag!!Parameter a!!Parameter d!!Parameter e
 
|-
 
|-
| Angry Birds || <math>f(x)=-0.13(x-7)^2+4.85</math> || -0.15 ≤ a ≤ -0.13 || 6.80 ≤ d ≤ 7.20 || 4.70 ≤ e ≤ 5.00
+
|Angry Birds||<math>f(x)=-0.13(x-7)^2+4.85</math>||-0.15 ≤ a ≤ -0.13||6.80 ≤ d ≤ 7.20||4.70 ≤ e ≤ 5.00
 
|-
 
|-
| Golden Gate Bridge || <math>f(x)=0.04(x-5.7)^2+1</math> || 0.03 ≤ a ≤ 0.05 || 5.00 ≤ d ≤ 6.40 || 0.80 ≤ e ≤ 1.10
+
|Golden Gate Bridge||<math>f(x)=0.04(x-5.7)^2+1</math>||0.03 ≤ a ≤ 0.05||5.00 ≤ d ≤ 6.40||0.80 ≤ e ≤ 1.10
 
|-
 
|-
| Springbrunnen || <math>f(x)=-0.33(x-4,85)^2+5.3</math> || -0.40 ≤ a ≤ -0.30 || 4.70 ≤ d ≤ 5.00 || 5.10 ≤ e ≤ 5.50
+
|Springbrunnen||<math>f(x)=-0.33(x-4,85)^2+5.3</math>||-0.40 ≤ a ≤ -0.30||4.70 ≤ d ≤ 5.00||5.10 ≤ e ≤ 5.50
 
|-
 
|-
| Elbphilharmonie (Bogen links)|| <math>f(x)=0.40(x-2,50)^2+4.35</math> || 0.33 ≤ a ≤ 0.47 || 2.40 ≤ d ≤ 2.60 || 4.25 ≤ e ≤ 4.40
+
|Elbphilharmonie (Bogen links)||<math>f(x)=0.40(x-2,50)^2+4.35</math>||0.33 ≤ a ≤ 0.47||2.40 ≤ d ≤ 2.60||4.25 ≤ e ≤ 4.40
 
|-
 
|-
| Elbphilharmonie (Bogen mitte)|| <math>f(x)=0.33(x-5.85)^2+3.4</math> || 0.30 ≤ a ≤ 0.36 || 5.70 ≤ d ≤ 6.00 || 3.20 ≤ e ≤ 3.60
+
|Elbphilharmonie (Bogen mitte)||<math>f(x)=0.33(x-5.85)^2+3.4</math>||0.30 ≤ a ≤ 0.36||5.70 ≤ d ≤ 6.00||3.20 ≤ e ≤ 3.60
 
|-
 
|-
| Elbphilharmonie (Bogen rechts)|| <math>f(x)=0.22(x-9,40)^2+3.60</math> || 0.18 ≤ a ≤ 0.27 || 9.30 ≤ d ≤ 9.50 || 3.55 ≤ e ≤ 3.65
+
|Elbphilharmonie (Bogen rechts)||<math>f(x)=0.22(x-9,40)^2+3.60</math>||0.18 ≤ a ≤ 0.27||9.30 ≤ d ≤ 9.50||3.55 ≤ e ≤ 3.65
 
|-
 
|-
| Gebirgsformation || <math>f(x)=-0.2(x-5.4)^2+2.3</math> || -0.30 ≤ a ≤ -0.10 || 5.10 ≤ d ≤ 5.70 || 2.10 ≤ e ≤ 2.50
+
|Gebirgsformation||<math>f(x)=-0.2(x-5.4)^2+2.3</math>||-0.30 ≤ a ≤ -0.10||5.10 ≤ d ≤ 5.70||2.10 ≤ e ≤ 2.50
 
|-
 
|-
| Motorrad-Stunt || <math>f(x)=-0.07(x-7.7)^2+5.95</math> || -0.10 ≤ a ≤ -0.04 || 7.30 ≤ d ≤ 8.10 || 5.70 ≤ e ≤ 6.20
+
|Motorrad-Stunt||<math>f(x)=-0.07(x-7.7)^2+5.95</math>||-0.10 ≤ a ≤ -0.04||7.30 ≤ d ≤ 8.10||5.70 ≤ e ≤ 6.20
 
|-
 
|-
| Basketball || <math>f(x)=-0.32(x-6.5)^2+6.45</math> || -0.35 ≤ a ≤ -0.29 || 6.20 ≤ d ≤ 6.80 || 6.20 ≤ e ≤ 6.70
+
|Basketball||<math>f(x)=-0.32(x-6.5)^2+6.45</math>||-0.35 ≤ a ≤ -0.29||6.20 ≤ d ≤ 6.80||6.20 ≤ e ≤ 6.70
 
|}
 
|}
  
Zeile 356: Zeile 364:
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
! Hintergrundbild!! Lösungsvorschlag !! Parameter a !! Parameter b !! Parameter c
+
!Hintergrundbild!!Lösungsvorschlag!!Parameter a!!Parameter b!!Parameter c
 
|-
 
|-
| Angry Birds || <math>f(x)=-0.13x^2+1.82x-1.52</math> || -0.14 ≤ a ≤ -0.13 || 1.82 ≤ b ≤ 1.95 || -1.85 ≤ c ≤ -1.52
+
|Angry Birds||<math>f(x)=-0.13x^2+1.82x-1.52</math>||-0.14 ≤ a ≤ -0.13||1.82 ≤ b ≤ 1.95||-1.85 ≤ c ≤ -1.52
 
|-
 
|-
| Golden Gate Bridge || <math>f(x)=0.04x^2-0.46x+2.30</math> || 0.03 ≤ a ≤ 0.05 || -0.40 ≤ b ≤ -0.50 || 2.05 ≤ c ≤ 2.30
+
|Golden Gate Bridge||<math>f(x)=0.04x^2-0.46x+2.30</math>||0.03 ≤ a ≤ 0.05||-0.40 ≤ b ≤ -0.50||2.05 ≤ c ≤ 2.30
 
|-
 
|-
| Springbrunnen || <math>f(x)=-0.33x^2+3.20x-2.46</math> || -0.40 ≤ a ≤ -0.30 || 3.15 ≤ b ≤ 3.35 || -2.95 ≤ c ≤ -2.45
+
|Springbrunnen||<math>f(x)=-0.33x^2+3.20x-2.46</math>||-0.40 ≤ a ≤ -0.30||3.15 ≤ b ≤ 3.35||-2.95 ≤ c ≤ -2.45
 
|-
 
|-
| Elbphilharmonie (Bogen links)|| <math>f(x)=0.40x^2-2.00x+6.85</math> || 0.33 ≤ a ≤ 0.47 || 1.80 ≤ b ≤ 2.00 || 6.35 ≤ c ≤ 6.85
+
|Elbphilharmonie (Bogen links)||<math>f(x)=0.40x^2-2.00x+6.85</math>||0.33 ≤ a ≤ 0.47||1.80 ≤ b ≤ 2.00||6.35 ≤ c ≤ 6.85
 
|-
 
|-
| Elbphilharmonie (Bogen mitte)|| <math>f(x)=0.33x^2-3.86x+14.69</math> || 0.30 ≤ a ≤ 0.36 || -4.10 ≤ b ≤ -3.60 || 13.65 ≤ c ≤ 14.95
+
|Elbphilharmonie (Bogen mitte)||<math>f(x)=0.33x^2-3.86x+14.69</math>||0.30 ≤ a ≤ 0.36||-4.10 ≤ b ≤ -3.60||13.65 ≤ c ≤ 14.95
 
|-
 
|-
| Elbphilharmonie (Bogen rechts)|| <math>f(x)=0.22x^2-4.14x+23.04</math> || 0.18 ≤ a ≤ 0.27 || -3.40 ≤ b ≤ -5.05 || 19.70 ≤ c ≤ 27.20
+
|Elbphilharmonie (Bogen rechts)||<math>f(x)=0.22x^2-4.14x+23.04</math>||0.18 ≤ a ≤ 0.27||-3.40 ≤ b ≤ -5.05||19.70 ≤ c ≤ 27.20
 
|-
 
|-
| Gebirgsformation || <math>f(x)=-0.2x^2+2.16x-3.53</math> || -0.30 ≤ a ≤ -0.15 || 1.55 ≤ b ≤ 3.30 || -6.35 ≤ c ≤ -1.70
+
|Gebirgsformation||<math>f(x)=-0.2x^2+2.16x-3.53</math>||-0.30 ≤ a ≤ -0.15||1.55 ≤ b ≤ 3.30||-6.35 ≤ c ≤ -1.70
 
|-
 
|-
| Motorrad-Stunt || <math>f(x)=-0.07x^2+1.08x+1.79</math> || -0.10 ≤ a ≤ -0.04 || 0.85 ≤ b ≤ 1.30 || 0.95 ≤ c ≤ 1.79
+
|Motorrad-Stunt||<math>f(x)=-0.07x^2+1.08x+1.79</math>||-0.10 ≤ a ≤ -0.04||0.85 ≤ b ≤ 1.30||0.95 ≤ c ≤ 1.79
 
|-
 
|-
| Basketball || <math>f(x)=-0.32x^2+4.16x-7.07</math> || -0.35 ≤ a ≤ -0.29 || 3.80 ≤ b ≤ 4.40 || -7.40 ≤ c ≤ -6.10
+
|Basketball||<math>f(x)=-0.32x^2+4.16x-7.07</math>||-0.35 ≤ a ≤ -0.29||3.80 ≤ b ≤ 4.40||-7.40 ≤ c ≤ -6.10
 
|}
 
|}
 
</div>
 
</div>

Version vom 29. Januar 2019, 15:37 Uhr


In diesem Kapitel des Lernpfads findest du Übungsaufgaben zu allen Inhalten, die du in den vorherigen Abschnitten kennengelernt hast. Sie sollen dir helfen, dein Wissen zu festigen. Klicke im Inhaltsverzeichnis einfach auf das Thema, zu dem du Übungsaufgaben bearbeiten möchtest.


Hinweis: Du musst nicht alle Aufgaben dieser Seite bearbeiten. Suche dir gezielt Aufgaben zum Üben heraus.

Parameter

Die Paramter der Scheitelpunktform

Übung

Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 17) Notizblock mit Bleistift.

Zeichne die Graphen der folgenden Funktionen:

a) '"`UNIQ--postMath-00000001-QINU`"'                 b) '"`UNIQ--postMath-00000002-QINU`"'            c) '"`UNIQ--postMath-00000003-QINU`"'

d) '"`UNIQ--postMath-00000004-QINU`"'          e) '"`UNIQ--postMath-00000005-QINU`"'           f) '"`UNIQ--postMath-00000006-QINU`"'              g) '"`UNIQ--postMath-00000007-QINU`"'

Gib für die Parameter '"`UNIQ--postMath-00000008-QINU`"' und '"`UNIQ--postMath-00000009-QINU`"' die Werte im Applet an, so dass g(x) einem der Funktionsterme (a)-(g) gleicht. Vergleiche zur Kontrolle die Parabel im Applet mit deiner gezeichneten Parabel.



Übung

Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 16) Notizblock mit Bleistift.

In dieser Aufgabe werden die Parameter kombiniert, die du in dem Kapitel Die Parameter der Scheitelpunktform kennengelernt hast.


Gegeben ist die Wertetabelle:

Übung zu Parametern

a) Zeichne die Graphen zu den Funktionen f(x), g(x) und h(x) in das Koordinatensystem in deinem Hefter. Nicht alle y-Werte können sinnvoll in den Ausschnitt, der in dem Koordinatensystem gezeigt wird, eingetragen werden.

Lösung zu Tabelle Übung1

b) Bestimme die Funktionsterme in Scheitelpunktform.

Lies zunächst den Scheitelpunkt ab und setze dessen Koordinaten an den passenden Stellen des allgemeinen Funktionsterms ein.

Ist der Graph gestreckt, gestaucht und/oder gespiegelt? Durch die Beantwortung dieser Frage kannst du den Wert des zugehörigen Parameters eingrenzen. Anschließend findest du den genauen Wert zum Beispiel durch systematisches Probieren und abgleichen mit den gegebenen Funktionswerten.


Übung

In diesem Applet sind verschiedene Graphen abgebildet. Ermittle die zugehörigen Funktionsterme und trage sie in die Felder unter den jeweiligen Graphen ein.

Hinweise:

1. Beginne jeden Term mit
2. Wenn du ein "hoch 2" einfügen möchtest, schreibe ^2.

Lösung zu Applet


Übung

Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S.17) Notizblock mit Bleistift.

Vervollständige die Tabelle:

Übungsaufgabe

Lösungsvorschlag



Die Parameter der Normalform

Übung
Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 17) Notizblock mit Bleistift.


Zwei Parabeln sollen den gleichen y-Achsenabschnitt c haben. Gib je zwei Funktionsterme in Normalform an.

a)        b)        c)        d)        e)

Deine Terme können ganz anders aussehen, als die Terme hier in den Lösungsvorschlägen. Wichtig ist, dass deine zwei Terme jeweils den gleichen y-Achsenabschnitt c wie angegeben haben. Die Parameter a und b können dann beliebig variiert werden.

a)               b)               c)    
                           


d)               e)    
                   


Übung
Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 18) und einen Partner Notizblock mit Bleistift Partnerarbeit.


a) Denke dir drei Funktionsterme in Normalform aus.

Terme in Normalform quadratischer Funktionen sehen allgemein so aus: . Denke dir Werte für die Parameter a, b und c aus und setze sie ein.

Beispiel: Für , und erhält man: .

b) Gib deinem Partner deine Funktionsterme und nimm dafür seine. Zeichnet die Graphen zu den Termen.

Zur Kontrolle kannst du das unten stehende GeoGebra-Applet benutzen. Gib die Parameter der Funktionsterme ein und vergleiche deinen Graph mit dem Ergebnis im Applet.

c) Vergleicht eure Ergebnisse und erklärt Schritt-für-Schritt wie ihr die Graphen erstellt habt. Notiert eine gemeinsame Schritt-für-Schritt-Anleitung in euren Hefter.

  1. y-Achsenabschnitt P(0;c) ablesen.
  2. Verschiedene x-Werte in den Term einsetzen und so die zugehörigen y-Werte bestimmen (Erstellen einer Tabelle).
  3. Koordinatensystem zeichnen und Punkte eintragen.
  4. Punkte zu einer Parabel verbinden.
GeoGebra

Allgemeine Übungen zu Parametern

Übung

Teste dein Wissen und werde Punkte-Millionär:



Übung
Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 19) und einen Partner Notizblock mit Bleistift Partnerarbeit.


a) Denke dir zwei Terme quadratischer Funktionen aus und notiere eine Lagebeschreibung des Graphen.

Die Parabel ist eine an der x-Achse gespiegelte Normalparabel. Sie ist um je eine Einheit nach rechts und nach oben verschoben. Ihr Scheitelpunkt lautet S(1|1).

b) Tausche deine Beschreibungen (nicht den Term!) mit denen deines Partners aus und bestimme seine Funktionsterme.

Die Lösung zu dem Beispiel in Übungsteil a) lautet: .

c) Kontrolliert eure Ergebnisse gegenseitig. Habt ihr die richtigen Terme gefunden? Wenn nicht, versucht gemeinsam eure Fehler aufzudecken und zu klären.

Schaut euch noch einmal die Merksätze auf den Parameterseiten der Normalform und der Scheitelpunktform an.


Von der Scheitelpunkt- zur Normalform

Übung
Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 20) Notizblock mit Bleistift.


Forme die folgenden Terme in Scheitelpunktform in Normalform um:


                          

                    

             

Funktionsterm (1)    Schritt-für-Schritt-Anleitung     Funktionsterm (6)    Schritt-für-Schritt-Anleitung
   Klammer auflösen        Klammer auflösen
   Klammer ausmultiplizieren        Klammer ausmultiplizieren
   Zusammenfassen        Zusammenfassen
       


Funktionsterm (2)    Schritt-für-Schritt-Anleitung   Funktionsterm (7)    Schritt-für-Schritt-Anleitung
   Klammer auflösen      Klammer auflösen
   innere Klammer ausmultiplizieren      Klammer ausmultiplizieren
   Klammer ausmultiplizieren      Zusammenfassen
   Zusammenfassen        
           


Funktionsterm (3)    Schritt-für-Schritt-Anleitung   Funktionsterm (8)    Schritt-für-Schritt-Anleitung
   Klammer auflösen      Klammer auflösen
   innere Klammer ausmultiplizieren      innere Klammer ausmultiplizieren
   Klammer ausmultiplizieren      Klammer ausmultiplizieren
   Zusammenfassen      Zusammenfassen
     


Funktionsterm (4)    Schritt-für-Schritt-Anleitung     Funktionsterm (9)    Schritt-für-Schritt-Anleitung
   Klammer auflösen        Klammer auflösen
   Klammer ausmultiplizieren        innere Klammer ausmultiplizieren
   Zusammenfassen        Klammer ausmultiplizieren
           Zusammenfassen
             


Funktionsterm (5)    Schritt-für-Schritt-Anleitung
   Klammer auflösen
   Klammer ausmultiplizieren
   Zusammenfassen


Quadratische Funktionen anwenden

Übung
Diese Aufgabe befindet sich auch in den Kapiteln zur Scheitelpunktform und zur Normalform. Du kannst sie hier erneut als Übung verwenden, indem du die Bilder bearbeitest, die du dort ausgelassen hast.


Finde Werte für a, d und e bzw. a, b und c, so dass bzw. die Kurve auf dem Bild möglichst gut beschreibt.

GeoGebra

Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben.

Scheitelpunktform:

Hintergrundbild Lösungsvorschlag Parameter a Parameter d Parameter e
Angry Birds -0.15 ≤ a ≤ -0.13 6.80 ≤ d ≤ 7.20 4.70 ≤ e ≤ 5.00
Golden Gate Bridge 0.03 ≤ a ≤ 0.05 5.00 ≤ d ≤ 6.40 0.80 ≤ e ≤ 1.10
Springbrunnen -0.40 ≤ a ≤ -0.30 4.70 ≤ d ≤ 5.00 5.10 ≤ e ≤ 5.50
Elbphilharmonie (Bogen links) 0.33 ≤ a ≤ 0.47 2.40 ≤ d ≤ 2.60 4.25 ≤ e ≤ 4.40
Elbphilharmonie (Bogen mitte) 0.30 ≤ a ≤ 0.36 5.70 ≤ d ≤ 6.00 3.20 ≤ e ≤ 3.60
Elbphilharmonie (Bogen rechts) 0.18 ≤ a ≤ 0.27 9.30 ≤ d ≤ 9.50 3.55 ≤ e ≤ 3.65
Gebirgsformation -0.30 ≤ a ≤ -0.10 5.10 ≤ d ≤ 5.70 2.10 ≤ e ≤ 2.50
Motorrad-Stunt -0.10 ≤ a ≤ -0.04 7.30 ≤ d ≤ 8.10 5.70 ≤ e ≤ 6.20
Basketball -0.35 ≤ a ≤ -0.29 6.20 ≤ d ≤ 6.80 6.20 ≤ e ≤ 6.70

Normalform:

Hintergrundbild Lösungsvorschlag Parameter a Parameter b Parameter c
Angry Birds -0.14 ≤ a ≤ -0.13 1.82 ≤ b ≤ 1.95 -1.85 ≤ c ≤ -1.52
Golden Gate Bridge 0.03 ≤ a ≤ 0.05 -0.40 ≤ b ≤ -0.50 2.05 ≤ c ≤ 2.30
Springbrunnen -0.40 ≤ a ≤ -0.30 3.15 ≤ b ≤ 3.35 -2.95 ≤ c ≤ -2.45
Elbphilharmonie (Bogen links) 0.33 ≤ a ≤ 0.47 1.80 ≤ b ≤ 2.00 6.35 ≤ c ≤ 6.85
Elbphilharmonie (Bogen mitte) 0.30 ≤ a ≤ 0.36 -4.10 ≤ b ≤ -3.60 13.65 ≤ c ≤ 14.95
Elbphilharmonie (Bogen rechts) 0.18 ≤ a ≤ 0.27 -3.40 ≤ b ≤ -5.05 19.70 ≤ c ≤ 27.20
Gebirgsformation -0.30 ≤ a ≤ -0.15 1.55 ≤ b ≤ 3.30 -6.35 ≤ c ≤ -1.70
Motorrad-Stunt -0.10 ≤ a ≤ -0.04 0.85 ≤ b ≤ 1.30 0.95 ≤ c ≤ 1.79
Basketball -0.35 ≤ a ≤ -0.29 3.80 ≤ b ≤ 4.40 -7.40 ≤ c ≤ -6.10


Übung

Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 21) Notizblock mit Bleistift.

Übungsaufgabe


a) ,          ,          


Für x = 2 m beträgt der Flächeninhalt der Terrasse 36 m2. Ist die Seitenlänge x = 4 m, dann beträgt der Flächeninhalt der Terrasse 64 m2. Bei einer Seitenlänge von x = 10 m beträgt der Flächeninhalt 100 m2.

Hinweis: Hier kannst du auch andere Werte x eingesetzt haben. Um eine sinnvolle Lösung zu erhalten darf x weder kleiner 0 m noch größer als 20 m sein. In den Fällen würdest du einen negativen Flächeninhalt erhalten.


b)

Für den Flächeninhalt eines Rechtecks gilt: , wobei a und b die Seitenlängen des Rechtecks beschreiben. Für die Terrasse gilt: und .


Erstellt von: Elena Jedtke (Diskussion)