Prozente und Prozentrechnung: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Wechseln zu: Navigation, Suche
(Markierung: 2017-Quelltext-Bearbeitung)
(Markierung: 2017-Quelltext-Bearbeitung)
Zeile 36: Zeile 36:
 
TEST
 
TEST
  
<iframe src="https://www.geogebra.org/classic/rytqqtnq?embed" width="800" height="600" allowfullscreen style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe>
+
<iframe src="https://www.geogebra.org/classic/rytqqtnq?embed" width="800" height="600" allowfullscreen="" style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe>
 +
 
 +
Du kannst im nachfolgenden Lückentext überprüfen, ob du nun weißt, was <span style="color: red">Bruchteil </span>, <span style="color: green">Anteil </span> und <span style="color: blue">Ganzes </span> sind.
 +
<div class="lueckentext-quiz">
 +
Wenn du einen Bruch in einer Sachsituation gegeben hast, dann kannst du bei dem Bruch immer Bruchteil, Anteil und '''Ganzes''' betrachten. Das Ganze stellt den '''Ausgangspunkt''' dar, auf welchen sich der '''Bruchteil''' und der Anteil beziehen. Bei Brüchen wird meist nur ein gewisser '''Teil''' des Ganzen betrachtet. Dabei handelt es sich um den Bruchteil. Das Verhältnis zwischen Bruchteil und Ganzem spiegelt sich im '''Anteil''' wieder.
 +
</div>

Version vom 21. August 2021, 15:25 Uhr


Lernpfad

Herzlich willkommen im Lernpfad Prozente und Prozentrechnung!


Dieser Lernpfad soll dir dabei helfen, dein Wissen aus der Bruchrechnung auf die Prozentrechnung zu übertragen und deine Vorstellung von Prozenten auf- bzw. auszubauen.

Das Schöne daran ist, dass du vieles von dem, was du bereits aus der Bruchrechnung kennst, hier direkt anwenden kannst.

Der Begriff "Prozent" heißt dabei nichts anderes als "von Hundert". Du hast es also im Prinzip mit nichts anderem zu tun, als einem Bruch, dessen Nenner immer 100 ist. Es gibt also keinen Grund, vor der Prozentrechnung Angst zu haben!
Also: Leg los!

Wiederholung: Bruchteil, Anteil und Ganzes

Info
Zunächst rufen wir uns in Erinnerung, was der Bruchteil, der Anteil und das Ganze in der Bruchrechnung war. Noch einmal: Die Prozentrechnung ist nichts anderes als ein Sonderfall der Bruchrechnung.


Beispiel

In diesem Beispiel schauen wir uns noch einmal drei Viertel eines Kreises an.

Darstellung BAG Kreis.png

In der Prozentrechnung gibt es nun andere Begriffe für das, was du bereits aus der Bruchrechnung kennst.
Das Ganze nennt sich hier der Gesamtwert, der Bruchteil entspricht dem Prozentwert und der Anteil wird hier Prozentsatz genannt und nicht mehr als Bruch, sondern als Zahlenwert mit einem Prozentzeichen (%) dahinter angegeben.

506

TEST

Du kannst im nachfolgenden Lückentext überprüfen, ob du nun weißt, was Bruchteil , Anteil und Ganzes sind.

Wenn du einen Bruch in einer Sachsituation gegeben hast, dann kannst du bei dem Bruch immer Bruchteil, Anteil und Ganzes betrachten. Das Ganze stellt den Ausgangspunkt dar, auf welchen sich der Bruchteil und der Anteil beziehen. Bei Brüchen wird meist nur ein gewisser Teil des Ganzen betrachtet. Dabei handelt es sich um den Bruchteil. Das Verhältnis zwischen Bruchteil und Ganzem spiegelt sich im Anteil wieder.