Oberstufen-Chemiebuch Kontextorientiert/Alltags-Kunststoffe - Kohlenstoff-Ketten in viele Variationen

Aus ZUM-Unterrichten

Nachdem auf der vorherigen Seiet vor allem mit den Prinzipien der Kunststoffchemie beschäftigt haben, soll es nun um konkrete Typen an Kunststoffen gehen mit verschiedenen Monomeren und Polymeren. Dabei werden wir dann die Theorie nutzen, um die Eigenschaften der Stoffe erklären zu können bzw. selber bestimmen können.

Polyethylen

Polyethylene repeat unit.svg

Das Polyethylen (kurz PE) ist zwar nicht das erste Polymer, dass hergestellt wurde, aber es ist das Einfachste. Der Name Polyethylen ergibt sich aus dem Ausgangsstoff, dem Monomer, hier also das Ethylen = Ethen. Es ist deshalb das einfachste, da an der grundlegenden Struktur, die für eine Polymerisationsreaktion notwendig ist, also der Doppelbindung, keine weitere Kette oder Gruppe hängt.

RadicalPolymerization.png

Geschichtliche Entwicklung

Diazomethane.svg

Zum ersten Mal wurde 1898 von dem deutschen Chemiker Hans von Pechmann zufällig hergestellt, als er mit Diazomethan (siehe Bild) experimentierte. Man erhielt eine weiße, wachsartige Substanz. Die Entstehung lässt sich recht leicht erklären, denn wenn vom instabilen Diazomethan ein Stickstoff-Molekül abgespalten wird, werden CH2-Gruppen frei, die sich zu einer langen Kette zusammensetzen können. Da Diazomethan sehr instabil ist, deswegen nicht in größeren Mengen gelagert werden kann und nebenbei auch giftig ist, ist die Herstellungsweise wenig erfolgreich gewesen.

Die erste industrielle Polyethylen-Synthese wurde (wieder durch Zufall) 1933 in England von Chemikern entdeckt, die für die ICI (Imperial Chemical Industries) arbeiteten. Bei extrem hohen Drücken (ca. 1400 bar) erzeugten sie aus einem Gemisch aus Ethylen und Benzaldehyd ein weißes, wachsartiges Material. Das Benzaldehyd ist für die Reaktion nicht wirklich von Bedeutung und tatsächlich funktionierte die Methode nur wegen kleinen Mengen an Sauerstoff, die ins Reaktionsgefäß gelangt waren. Zwei Jahre später konnte dann aber wieder ein Chemiker von ICI eine tatsächlich funktionierende und nachvollziehbare Hochdrucksynthese für Polyethylen vorstellen. Sie war die Grundlage für die industrielle Produktion am 1939.

Ein weiterer Meilenstein in der industriellen Herstellung von Polyethylen war die Entwicklung von Katalysatoren, die die Polymerisation bei milden Temperaturen und Drücken ermöglichen. Immer noch verwendet wird der 1953 nach seinen Entdeckern (Karl Ziegler und Giulio Natta) benannte Ziegler-Natta-Katalysator, der Titanhalogeniden und aluminiumorganischen Verbindungen enthält.


Verschiedene Typen von Polyethylen

Rein theoretisch ist ein solche Polymersation ja eine eindeutige Sache:

  • mit einer Startreaktion wird eine Doppelbindung (hier am Ethylen) aufgespalten und damit die Kettenreaktion vorbereitet.
  • in der Kettenreaktion bindet sich immer wieder eine C2H4-Gruppe nach der anderen, so dass die Kette länger und länger wird.

Natürlich wird nicht nur an einer Stelle gestartet, aber wir gehen zunächst einmal davon aus, dass diese Kettenverlängerungen so für sich ablaufen. Tatsächlich ist es so, das bei den ersten Polyethylen-Synthesen, aufgrund hohen Temperaturen gar keine so geordnete Polymerisation stattgefunden hat. Stattdessen kann man sagen, das die hohen Temperaturen an ganz vielen Stellen gleichzeitig die Doppelbindungen aufbrechen, dabei Radikale entstehen und so gleichzeitig viele Ketten anfangen zu wachsen. Diese radikalischen Ketten könnten sich dann beliebig mit anderen Ketten verbinden oder wenn ein H-Atom abgespalten wurde, kann auch eine Seitenkette an einer längeren angehängt. Tatsache ist, dass die ersten Polyethlene sehr stark verzweigte Ketten bildeten, die man sich so vorstellen:


PE-LD schematic.svg

Führt man stattdessen die Polymerisation bei niedrigen Temperaturen durch, wie es zum Beispiel beim Ziegler-Natta-Katalysator der Fall ist, so kann man den Verzweigungsgrad genau bestimmen. Für die Entdeckungen zur Nutzung von Katalysatoren bei der Polymerisation bekamen Karl Ziegler und Giulio Natta übrigens 1963 den Nobelpreis für Chemie.

Statt der stark verzweigten Struktur, ist mit dem Katalysator nun möglich auch wenig bis gar nicht verzweigte Polyethylensorten zu gewinnen.

PE-HD oder HDPE Schematische Darstellung von PE-HD (Polyethylen hoher Dichte).
PE-LLD oder LLDPE

Schematische Darstellung von PE-LLD (lineares Polyethylen niedriger Dichte)

PE-LD oder LDPE Schematische Darstellung von PE-LD (Polyethylen niedriger Dichte).

Die verschiedenen Kürzel, die hinter den Buchstaben PE steht beschreibt den wesentlichen Unterschied zwischen den drei Sorten, nämlich die unterschiedliche Dichte:

  • PE-HD hat einen hohe Dichte (High Density) von durchschnittlich etwa 0,955 g/cm3
  • PE-LD hat eine geringe Dichte (Low Density) von durchschnittlich etwa 0,925 g/cm3
  • PE-LLD hat eine teilweise recht niedrige Dichte von 0,87–0,94 g/cm3, der Namen leitet sich von Linear Low Density ab, da trotz der wenig verzweigten Struktur eine niedrige Dichte hat.

Polypropylen (PP)

Polyvinylchlorid (PVC)

Polystyrol (PS)

, besser bekannt in geschäumtem Zustand als Styropor® (Handelsname der BASF) == Polytetrafluorethylen (PTFE) ==, Handelsname ist Teflon® (E. l. Du Pont de Nemours and Company) oder Tefal® == Polymethylmethacrylat (PMMA) ==, unter dem Handelsnamen Plexiglas® (Evonik Industries AG)

Polyacrylnitril (PAN)

, als Copolymer mit Polymethylmethacrylat zur Herstellung von Textilfasern