Laplace-Wahrscheinlichkeit wiederholen und vertiefen/Drei-Würfel-Problem: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Wechseln zu: Navigation, Suche
Main>Florian Bogner
K (typo)
Main>Florian Bogner
K
Zeile 34: Zeile 34:
 
:*Denke nochmal an „Gustavs Glücksspiel“. Wenn er dir das Spiel mit zwei gleichartigen Würfeln angeboten hätte, hätten sich die Wahrscheinlichkeiten deswegen geändert?
 
:*Denke nochmal an „Gustavs Glücksspiel“. Wenn er dir das Spiel mit zwei gleichartigen Würfeln angeboten hätte, hätten sich die Wahrscheinlichkeiten deswegen geändert?
  
:*Das Glücksspiel von Gustav war ein Laplace-Experiment. Ist das „Drei-Würfel-Problem“ auch eines?  
+
:*Das Glücksspiel von Gustav war ein Laplace-Experiment. Ist das „Drei-Würfel-Problem“ von ''de Méré'' auch eines?  
  
 
:*Stell dir vor, die Würfel von ''de Méré'' wären unterscheidbar. Was ist nun für die Ergebnismenge wichtig?
 
:*Stell dir vor, die Würfel von ''de Méré'' wären unterscheidbar. Was ist nun für die Ergebnismenge wichtig?
Zeile 40: Zeile 40:
  
  
{{Lösung versteckt|:*Die Ergebnisse von ''de Méré'' sind nicht gleichwahrscheinlich! Also kann er gar nicht die Laplace-Wahrscheinlichkeiten berechnen.
+
{{Lösung versteckt|:*Die angegebenen '''Ergebnisse''' von ''de Méré'' sind <u>nicht</u> gleichwahrscheinlich! Also kann er gar nicht die Laplace-Wahrscheinlichkeiten der '''Ereignisse''' „Augensumme 11“ und „Augensumme 12“ mit der Behauptung der Gleichwahrscheinlichkeit berechnen.
  
:*Die Wahrscheinlichkeiten bei Gustavs Glücksspiel hätten sich ja auch nicht geändert, nur weil die Würfel anders gewesen wären. Denke daran, dass zum Beispiel eine farbenblinde Person die andersfarbigen Würfel gar nicht unterscheiden könnte.
+
:*Die Wahrscheinlichkeiten bei Gustavs Glücksspiel hätten sich ja auch nicht geändert, nur weil die Würfel gleichfarbig gewesen wären. Denke daran, dass zum Beispiel eine farbenblinde Person die andersfarbigen Würfel gar nicht unterscheiden könnte.
 
}}
 
}}
  

Version vom 7. September 2009, 09:35 Uhr

Das „Drei-Würfel-Problem“

Bild von drei Würfeln einfügen!


Vorlage:Kasten Mathematik


  Stift.gif   Aufgabe 3.1

Welchen Fehler hatte de Méré wohl gemacht? Kannst du den Irrtum aufklären?

Versuche die Aufgabe zuerst ohne Hilfen zu lösen!

Vielleicht kann dir diese Urnensimulation weiterhelfen:

Vorlage:Rechtsklick Fenster Urnensimulation

Lösungshilfen: Vorlage:Versteckt


  • Die angegebenen Ergebnisse von de Méré sind nicht gleichwahrscheinlich! Also kann er gar nicht die Laplace-Wahrscheinlichkeiten der Ereignisse „Augensumme 11“ und „Augensumme 12“ mit der Behauptung der Gleichwahrscheinlichkeit berechnen.
  • Die Wahrscheinlichkeiten bei Gustavs Glücksspiel hätten sich ja auch nicht geändert, nur weil die Würfel gleichfarbig gewesen wären. Denke daran, dass zum Beispiel eine farbenblinde Person die andersfarbigen Würfel gar nicht unterscheiden könnte.


  Stift.gif   Aufgabe 3.2

Gib nun die Ergebnismenge für den dreifachen Würfelwurf so an, dass die Laplace-Annahme gerechtfertigt ist.



  Stift.gif   Aufgabe 3.3

Berechne nun die Wahrscheinlichkeiten für die Ereignisse E1: „Augensumme 11“ und E2: „Augensumme 12“ beim dreifachen Würfelwurf.

  • Für Ergebnisse mit drei verschiedenen Augenzahlen müssen wir nicht nur eines beachten, sondern sechs verschiedene (Zählprinzip).
Beispiel:
  • Für Ergebnisse mit zwei verschiedenen Augenzahlen müssen wir drei verschieden Ergebnisse beachten.
  • Für Ergebnisse wie  gibt es nur ein Ergebnis.


Da der Unterschied nicht sehr groß ist, müssen de Méré und seine Freunde sehr oft gewürfelt haben, damit ihnen das Problem aufgefallen ist!




Vorlage:Kasten Mathematik