Integralrechnung/Ober- und Untersumme
< Integralrechnung
Version vom 23. April 2022, 17:40 Uhr von Maria Eirich (Diskussion | Beiträge)
Wir haben bis jetzt schon eine grundlegende Idee der Flächenbestimmung unter den Graphen von Funktionen kennengelernt. Jedoch ergibt dieses Verfahren bis jetzt nur einen Näherungswert für den Flächeninhalt.
Im Folgenden wird das Verfahren verbessert, der Flächeninhalt exakt bestimmt sowie das theoretische und praktische Fundament eines der in der gesamten Mathematik wichtigsten Verfahren verfestigt werden!
Dazu wird immer wieder auf den Funktionsumfang der freien Software Geogebra zurückgegriffen werden.

- Die Anzahl der Rechteckflächen bleibt gleich, ihre Breite ändert sich jedoch: Die Breite eines Rechtecks entspricht der Intervalllänge geteilt durch die Anzahl der (gleich breiten) Intervallunterteilungen. Je schmaler das Intervall wird, desto besser stimmen O und U überein und desto kleiner wird dann natürlich auch die Differenz.
- Je größer die Anzahl der Rechtecke wird, desto mehr nähern sich O und U einander an und desto kleiner wird somit deren Differenz. Durch die Vergrößerung von wird die Fläche unter der Kurve durch die Rechteckflächen besser beschreiben, durch seine Verringerung schlechter. Das kommt daher, dass durch immer schmaler werdende Rechtecke der Fehler durch die "übrigbleibenden" Flächen an den oberen Rechteckrändern immer kleiner wird.
- Die Ergebnisse von 1. und 2. gelten für beliebige Intervalle!
- Um keinen Unterschied zwischen O, U und der Fläche unter dem Graphen von mehr zu erhalten (also die Differenz zu 0 zu machen) müsste unendlich groß werden. Dies entspräche dann dem Grenzübergang .