Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Zusammenfassung Grundvorstellungen zum Ableitungsbegriff: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Wechseln zu: Navigation, Suche
K
K
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt)
Zeile 2: Zeile 2:
 
Auf dieser Seite finden Sie die Grundvorstellungen, die Sie sich in diesem Lernpfad selbst erschließen können in einer detaillierten Zusammenfassung.  
 
Auf dieser Seite finden Sie die Grundvorstellungen, die Sie sich in diesem Lernpfad selbst erschließen können in einer detaillierten Zusammenfassung.  
 
|Kurzinfo}}Zu Aufgaben verlinken
 
|Kurzinfo}}Zu Aufgaben verlinken
 +
 +
Der Begriff der Änderungsrate beruht auf vielfältigen Erfahrungen mit der Beschreibung von Änderungsprozessen. In der Sekundarstufe I wird neben der absoluten Änderung f.x1/ � f.x0/ auch die relative (oder auch mittlere) Änderungsrate f.x1/�f.x0/ x1�x0 betrachtet, beispielsweise bei der Diskussion über Durchschnittsgeschwindigkeiten oder bei derBerechnungvonGeradensteigungenmithilfevon Steigungsdreiecken.
 +
 +
 +
Mittlere Änderungsraten beziehen sich immer auf ein Intervall und können mithilfe des Differenzenquotienten berechnet werden. Dieses Intervall kann systematisch verkleinert werden, sodass man letztlich einer Stelle ein lokales Änderungsverhalten mithilfe des Grenzwertes zuschreiben kann.

Version vom 16. August 2019, 10:59 Uhr

Info

Auf dieser Seite finden Sie die Grundvorstellungen, die Sie sich in diesem Lernpfad selbst erschließen können in einer detaillierten Zusammenfassung.

Zu Aufgaben verlinken

Der Begriff der Änderungsrate beruht auf vielfältigen Erfahrungen mit der Beschreibung von Änderungsprozessen. In der Sekundarstufe I wird neben der absoluten Änderung f.x1/ � f.x0/ auch die relative (oder auch mittlere) Änderungsrate f.x1/�f.x0/ x1�x0 betrachtet, beispielsweise bei der Diskussion über Durchschnittsgeschwindigkeiten oder bei derBerechnungvonGeradensteigungenmithilfevon Steigungsdreiecken.


Mittlere Änderungsraten beziehen sich immer auf ein Intervall und können mithilfe des Differenzenquotienten berechnet werden. Dieses Intervall kann systematisch verkleinert werden, sodass man letztlich einer Stelle ein lokales Änderungsverhalten mithilfe des Grenzwertes zuschreiben kann.