Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Vorwissen: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 1: Zeile 1:
{{Navigation verstecken|{{Vorlage:Lernpfad-Navigation|
{{Navigation verstecken|{{Vorlage:Lernpfad-Navigation|
[[Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Vorwissen|Vorwissen]]<br/>
[[Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Vorwissen|Vorwissen]]<br/>
[[/Die Ableitung als lokale Änderungsrate|Die Ableitung als lokale Änderungsrate]] <br/>
[[Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als lokale Änderungsrate|Die Ableitung als lokale Änderungsrate]] <br/>
[[Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als Steigung der Tangente|Die Ableitung als Steigung der Tangente]]<br/>
[[Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als Steigung der Tangente|Die Ableitung als Steigung der Tangente]]<br/>
[[Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als lokale lineare Approximation|Die Ableitung als lokale lineare Approximation]]<br/>
[[Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als lokale lineare Approximation|Die Ableitung als lokale lineare Approximation]]<br/>

Version vom 16. August 2019, 08:36 Uhr


Info

Auf dieser Seite werden alle Voraussetzung wiederholt, die Sie zur Bearbeitung des Lernpfades benötigen.

Das Vorwissen steht Ihnen auch als PDF zur Verfügung.


Bild mit Wiederholung einfügen

Sekanten an Funktionsgraphen

Eine Sekante ist eine Gerade, die den Graphen einer Funktion in zwei Punkten schneidet.

Sekante des Funktionsgraphen durch die Punkte und .

Lineare Funktionen

Lineare Funktion sind Funktionen, die eine Funktionsgleichung der Form oder haben. Der Graph einer linearen Funktion ist eine Gerade. Die Zahl gibt den Wert der Steigung an und die Zahl gibt den y-Wert des Schnittpunkts der Geraden mit der y-Achse an.

Der Differenzenquotient

Die Steigung des Graphen einer linearen Funktion kann mit Hilfe des Differenzenquotienten berechnet werden.

Ist eine Funktion auf einem Intervall definiert, so gibt der Differenzenquotient

die Steigung der Geraden durch die Punkte und an.

Die Differenzen können auch als und geschrieben werden. Der griechische Großbuchstabe Delta steht hier als Symbol für die Differenz der x- und y-Werte.

Beispiele

BeispielDQ1.png Beispiel 2DQ.png

Die h - Schreibweise

Anstatt die Änderung der y-Werte in Relation zur Differenz zu setzen, kann man den Differenzenquotienten auch wie folgt schreiben:

Die mittlere Änderungsrate

Die mittlere Änderungsrate ist die relative Änderung eines Bestandes in einem gegebenen Intervall. Sie entspricht der Steigung der Sekante durch die Punkte und der Bestandsfunktion und lässt sich mit Hilfe des Differenzenquotienten berechnen.

Bestandsfunktion.png

Beispiele für Bestandsgrößen und deren Änderungen
Bestandsgröße Zuflüsse Abflüse
Anzahl der Schüler Einschulungen Schulabgänger
Treibstoffmenge im Tank Tanken an der Tankstelle Treibstoffverbrauch
Kontostand Zubuchung Abbuchung
Anzahl der Hotelgäste ankommende Gäste abreisende Gäste
Staatsverschuldung Staatseinnahmen Staatsausgaben
Beispiel
Bestandsfunktion

Bei einem Experiment wurde die Temperatur einer Flüssigkeit in 10 Minuten Abständen gemessen. Die mittlere Änderungsrate der Temperatur im Intervall lässt sich nun mit Hilfe des Differenzenquotient berechnen.

Von der zwanzigsten bis zur vierzigsten Minute nimmt die Temperatur also im durchschnitt 0,45 Grad Celsius pro Minute zu. Für die Steigung der Sekante durch die Punkte und gilt in dementsprechend .