Binomische Formeln

 $(a + b)^2 = a^2 + 2ab + b^2$ (1. Summand) wird quadriert + 2 · (1. Summand) · (2. Summand) + (2. Summand) wird quadriert $(a - b)^2 = a^2 - 2ab + b^2$

 $(a + b) \cdot (a - b) = a^2 - b^2$

(1. Summand) wird quadriert – (2. Summand) wird quadriert

b)
$$(-4x + 0.5xy^2)^2$$

c)
$$(12x - 3b^3) (12x + 3b^3)$$

d)
$$(-0.1x - 0.2x^2y)^2$$

$$\pm 10ab^2 \pm -6$$

(a + b) · (a - b) = a - b (1. Summand) wird quadriert - (2. Summand) wird quadriert 1) Berechne: a)
$$(2x + 3y)^2$$
 b) $(-4x + 0.5xy^2)^2$ c) $(12x - 3b^3)(12x + 3b^3)$ d) $(-0.1x - 0.2x^2y)^2$ 2) Ergänze die Lücken a) ____ + $10ab^2$ + ____ = (a + ____)^2 b) ____ - $169x^6y^4z^8$ = $(2a + ____)(__ - ___)$ c) $36x^2 - 6x$ + ___ = (___ + ___)^2 d) $0.25x^2$ + ____ + $324y^2$ = (___ - ___)^2 e) $b^2 - 0.81$ = (___ + ___) (___ - ___)

c)
$$36x^2 - 6x + \underline{\hspace{1cm}} = (\underline{\hspace{1cm}} + \underline{\hspace{1cm}})^2$$

d)
$$0.25x^2 + \underline{} + 324y^2 =$$

$$-169x^{\circ}y^{\circ}z^{\circ} =$$

Faktorisiere soweit wie möglich = Verwandle in ein Produkt

Kann ich gemeinsame Faktoren ausklammern? Ist es eine binomische Formel (evtl. Reihenfolge verändern!)?

3a)
$$z^2 - 2az + a^2$$

b)
$$-39ab^2 - 65a^4b^4 + 91a^3b^3$$

c)
$$50 - 72x^4$$

d)
$$8y + 4 + 4y^2$$

e)
$$-175x^2 + 28z^2$$

f)
$$50x^2 + 72y^2$$
 g

$$(y^2 - g) - 20x + 100x^3$$

$$+100x^2 + 25$$
 h) $2x^2 + 4$

i)
$$90x^2 + 75x + 45$$

k)
$$2x^2 + 4x + 8$$
 1) $384a^2 - 4$

3a)
$$z^2 - 2az + a^2$$
 b) $-39ab^2 - 65a^4b^4 + 91a^3b^3$ c) $50 - 72x^4$ d) $8y + 4 + 4y^2$ e) $-175x^2 + 28z^2$ f) $50x^2 + 72y^2$ g) $-20x + 100x^2 + 25$ h) $2x^2 + 4$ i) $90x^2 + 75x + 45$ k) $2x^2 + 4x + 8$ l) $384a^2 - 54b^2$ **Berechne und vereinfache soweit wie möglich.** VORSICHT: MINUS VOR DER KLAMMER \rightarrow Vorzeichen drehen sich um.

4a)
$$2x^2 - (3 + x^2)$$

b)
$$(x + 1)^2 - (2x + 3)$$

) c)
$$3y^4 - 4(2x + y^2)^2$$

b)
$$(x + 1)^2 - (2x + 3)(3x - 2)$$
 c) $3y^4 - 4(2x + y^2)^2$ d) $(-x + 6)(-x - 6) - (x - 2)^2$

(5x - 5)LE

$$\begin{array}{cccc}
 & (3 + x) \\
 & (x + y) - (x - y)
\end{array}$$

f)
$$4-4 \cdot [6(x+3)]^2$$
 g) $(x-20) + (-x+2)(2x+1)$ h) $(232+24345xy^2)^7 \cdot 0$

$$x = 2$$
) C) 3y = 4(2x + y)

d)
$$(-x + 6)(-x - 6) - (x - 2)^2$$

Flächeninhalt in Abhängigkeit von x 5a) Berechne den Flächeninhalt der schraffierten Figur. (Im Inneren ist ein Rechteck!)

b) Für welche x-Werte ergeben sich im Inneren kein Rechteck?

c) Ermittle x für A(x) = 72 FE.

Geometrische Ortslinien und Ortsbereiche

6) Gegeben sind die Punkte A $(-5 \mid 1)$, B $(-2 \mid -1)$ und C $(3 \mid 0)$.

a) Zeichne die Gerade g_1 = AB und die Gerade g_2 . Dabei gilt für g_2 : $C \in g_2$ und $g_{1\perp} g_2$ ($\perp \rightarrow$ senkrecht!).

Zeichne ebenso die Gerade g_3 . Dabei gilt für g_3 : $C \in g_3$ und $g_1 \mid g_3$.

- b) Zeichne mit Bleistift die Menge aller Punkte, die von g₁ und g₂ den gleichen Abstand haben.
- c) Zeichne mit Bleistift die Menge aller Punkte, die von g₁ und g₃ den gleichen Abstand haben.
- d) Zeichne die Menge aller Punkte, die von C 4 cm entfernt sind.
- e) Zeichne mit Farbe die Menge aller Punkte, die von C weniger als 4 cm entfernt sind und die von den drei Geraden g₁, g₂ und g₃ jeweils den gleichen Abstand haben.
- f) Gib zu b, c, d und e jeweils die Mengenschreibweise an.